OK, this is what we have. Please don't send any more votes on this now :)
Name Issue A Issue B
Greg #2 (alt #3, #1) Yes
Guilherme #3 Yes
Kalle #4 Yes
Tony Bibbs #3 Yes
Jaroslav Hanslik #1 (alt #3) Yes
Nathan Rixham* #2 (DS, alt #1 DS, #4) Yes
Liz #1 (alt #3) Yes
Andrei #2 (alt #3, #1) Yes
Janusz Lewandowski* #4 (alt #3) Yes
Steph #3 (alt #2) Abstained
Josh Davies #2 (DS) Yes
Lester* #3 Yes
Alexey #3 Yes
Marc Boeren #1 (DS) N/A
Derick #1 No
Vesselin Kenashkov #3 Yes
Lars* #3 (alt #1) N/A
Karsten Damberkalns #1 (alt #3) Yes
Jochem Maas #2 (alt #3, #1) Yes
Richard Quadling #1 (alt #2) No
Justin Carlson #3 N/A
James Dempster #1 Yes
Christian Schneider #3 N/A
Ben Ramsey #3 N/A
Ron Rademaker #3 N/A
Luke Richards #1 Yes
Stas #3 No
Geoffrey Sneddon #1 Yes
Scott #1 (alt #3) N/A
Michael Fischer* #2 (alt #3) Yes
Timothy Boronczyk #4 (alt #3) Yes
Josh Heidenreich #3 Yes
Daniel P Brown #3 Abstained
Mark Karpeles #4 (alt #3) N/A
Jeremy Darwood #3 (alt #1 DS) N/A
Arvids Godjuks* #3 (alt #2) Yes
Benjamin Schulz #3 N/A
Chuck Burgess #2 (alt #3) Yes
Marcel Esser* #1 N/A
Ryan Panning #2 (DS) Yes
Nate Abele #3 Yes
Ken Guest #2 N/A
Chris Stockton #3 N/A
Mikael Forsberg #3 N/A
Nate Tallman #3 N/A
Erik Schulz* #3 Yes
Stephane Lambert #1 N/A
Catalin Alexandru* #3 N/A
Mike Willbanks #3 Abstained
Aaron Wormus #3 (alt #1) N/A
name* = corrected/altered/clarified initial vote
DS = 'with different separator'
Issue A:
#1 - 19 (3 with different separator)
#2 - 12 (3 with different separator)
#3 - 37
#4 - 5
Issue A weighted (first choice gets 2 points, rest 1):
#1 - 24 + 7 = 31
#2 - 18 + 3 = 21
#3 - 50 + 12 = 62
#4 - 8 + 1 = 9
= 100/2
= 50 people
Issue B:
Yes - 26
No - 3 (see Richard and Stas' arguments)
Abs - 3
N/A - 18
= 50 people