Newsgroups: php.internals Path: news.php.net Xref: news.php.net php.internals:127642 X-Original-To: internals@lists.php.net Delivered-To: internals@lists.php.net Received: from php-smtp4.php.net (php-smtp4.php.net [45.112.84.5]) by lists.php.net (Postfix) with ESMTPS id 0EC111A00BC for ; Wed, 11 Jun 2025 06:57:22 +0000 (UTC) DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/simple; d=php.net; s=mail; t=1749624920; bh=WjObDJl7fbU5HVum6MiZC9zz/IVQjztt6X0JZkSbXFk=; h=Date:From:To:Cc:In-Reply-To:References:Subject:From; b=ft0hn4l7OfUf7CRAlJfAFYzgx41xaGayQuF9s4gqg/guBMwpg3Z4I/pSKYSltBI3t QBrfZFttHU14fDHOE2CekYj22GQwIUk/EFQGRJmfND4joOW7WeeLzLSB8ccpzKH47F 79sOogf4SlNsdtLL9BKAeoMTc2LwPCwbgOrrP6ByaCQFvlj7SQwCb+1kJHt7RDKilZ IvpWsqWtY1Mel/81P9XxNn1haNYOp+MX5drw+5OOGqLLZ9lBk6DuCdBIy0du8dIVfI eVbpKJIx5ygEFYwHGM1ictgVscXFucIw3jLI7Mys9b3LosJkdNv7xL0/rZY0NXYWQO 8bvfm9ruL9DkQ== Received: from php-smtp4.php.net (localhost [127.0.0.1]) by php-smtp4.php.net (Postfix) with ESMTP id 4BBE918004C for ; Wed, 11 Jun 2025 06:55:19 +0000 (UTC) X-Spam-Checker-Version: SpamAssassin 4.0.1 (2024-03-25) on php-smtp4.php.net X-Spam-Level: X-Spam-Status: No, score=-2.8 required=5.0 tests=BAYES_00,DC_PNG_UNO_LARGO, DKIM_SIGNED,DKIM_VALID,DKIM_VALID_AU,DKIM_VALID_EF,DMARC_MISSING, HTML_MESSAGE,RCVD_IN_DNSWL_LOW,SPF_HELO_PASS,SPF_PASS autolearn=no autolearn_force=no version=4.0.1 X-Spam-Virus: Error (Cannot connect to unix socket '/var/run/clamav/clamd.ctl': connect: Connection refused) X-Envelope-From: Received: from fout-a7-smtp.messagingengine.com (fout-a7-smtp.messagingengine.com [103.168.172.150]) (using TLSv1.3 with cipher TLS_AES_256_GCM_SHA384 (256/256 bits) key-exchange X25519 server-signature RSA-PSS (2048 bits) server-digest SHA256) (No client certificate requested) by php-smtp4.php.net (Postfix) with ESMTPS for ; Wed, 11 Jun 2025 06:55:19 +0000 (UTC) Received: from phl-compute-05.internal (phl-compute-05.phl.internal [10.202.2.45]) by mailfout.phl.internal (Postfix) with ESMTP id 6028413804DB; Wed, 11 Jun 2025 02:57:19 -0400 (EDT) Received: from phl-imap-05 ([10.202.2.95]) by phl-compute-05.internal (MEProxy); Wed, 11 Jun 2025 02:57:19 -0400 DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=bottled.codes; h=cc:cc:content-type:content-type:date:date:from:from :in-reply-to:in-reply-to:message-id:mime-version:references :reply-to:subject:subject:to:to; s=fm2; t=1749625039; x= 1749711439; bh=Z9XdedmJBpDdYdupqNQo10ZLi0IjtmikmQFPZ4c8SLQ=; b=V UXhcIQEroga/yURywKd5MGDylWvyDPLvokLuJfQJ6JUdqkOvbzS1IeahTXllK3pD 3Z0j86AVCt98U+jTE1Tw3aLU34w9KaCqm4T0m0CD1mnl+PQy/VfvHzX6piCWB9YE Vi6e7es3xjZfCjgEnfcS2utebXb8REUrYbUNEEAmyhaQzzcytqRbwwefdsi0zNYq QI+gBp9iRx6IHdYapnw8ty7fSoF4DAMLAXVJ6jNqx4y7p3sawYK2gN7bcHy97dhk jhZrsFAyGur+xe1KVWegIOhkZqg4eZD+V7GzAV85b2jumLIUrPFP5GdqMSc/28Zb SMlKMoNG6HffLlTtu9Rdw== DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d= messagingengine.com; h=cc:cc:content-type:content-type:date:date :feedback-id:feedback-id:from:from:in-reply-to:in-reply-to :message-id:mime-version:references:reply-to:subject:subject:to :to:x-me-proxy:x-me-sender:x-me-sender:x-sasl-enc; s=fm1; t= 1749625039; x=1749711439; bh=Z9XdedmJBpDdYdupqNQo10ZLi0IjtmikmQF PZ4c8SLQ=; b=fmrZk9gBgrd3FoKSAZGMNICwADlIbjTNrz8ZCCNQUJnnxuuOUNh lR+p1vny81n1qCU+IvAgLgCdckLcARdPNf3WB6WyOXCdCzaub5B+AGwtayhhdIHU aeK71idwu46PXgtIbe21b0ZQjb/clloDLackwNIaZZGSYm35tr8NECpZ4MrIVebA Iu0jGiNjyKPCzFtsw2Vu/AbEcvXxKn+eq/EoheYtclmU7Y+9bPlDMj2tPCGG4u9w rkJ/X0gzXzbwalMAUbQDe1IfZACtrN7liaB/5iv1NZlO0/dxjGjWrf43gfK19V1x reMF/32poqQlbYqzh5Iaw4J9sDukRzbO/AQ== X-ME-Sender: X-ME-Proxy-Cause: gggruggvucftvghtrhhoucdtuddrgeeffedrtddugdduudekhecutefuodetggdotefrod ftvfcurfhrohhfihhlvgemucfhrghsthforghilhdpggftfghnshhusghstghrihgsvgdp uffrtefokffrpgfnqfghnecuuegrihhlohhuthemuceftddtnecusecvtfgvtghiphhivg hnthhsucdlqddutddtmdenucfjughrpefoggffhffvvefkjghfufgtsegrtderreertdej necuhfhrohhmpedftfhosgcunfgrnhguvghrshdfuceorhhosgessghothhtlhgvugdrtg houggvsheqnecuggftrfgrthhtvghrnhepieeuteehvddvfeejhffgieehleehhedthfef keejffelgfevvdekudetjeejtddtnecuvehluhhsthgvrhfuihiivgeptdenucfrrghrrg hmpehmrghilhhfrhhomheprhhosgessghothhtlhgvugdrtghouggvshdpnhgspghrtghp thhtohepfedpmhhouggvpehsmhhtphhouhhtpdhrtghpthhtoheplhgrrhhrhiesghgrrh hfihgvlhguthgvtghhrdgtohhmpdhrtghpthhtohepgigvphhoiiiiugesghhmrghilhdr tghomhdprhgtphhtthhopehinhhtvghrnhgrlhhssehlihhsthhsrdhphhhprdhnvght X-ME-Proxy: Feedback-ID: ifab94697:Fastmail Received: by mailuser.phl.internal (Postfix, from userid 501) id E48D5182006A; Wed, 11 Jun 2025 02:57:18 -0400 (EDT) X-Mailer: MessagingEngine.com Webmail Interface Precedence: bulk list-help: list-post: List-Id: internals.lists.php.net x-ms-reactions: disallow MIME-Version: 1.0 X-ThreadId: T50d26af4e5cb2915 Date: Wed, 11 Jun 2025 08:56:44 +0200 To: "Dmitry Derepko" , "Larry Garfield" Cc: "php internals" Message-ID: In-Reply-To: References: Subject: Re: [PHP-DEV] Feature Discussion | Content-Type: multipart/alternative; boundary=4f3f88f9683c4f46b75117d2978836df From: rob@bottled.codes ("Rob Landers") --4f3f88f9683c4f46b75117d2978836df Content-Type: text/plain; charset=utf-8 Content-Transfer-Encoding: quoted-printable On Wed, Jun 11, 2025, at 08:31, Dmitry Derepko wrote: > I see. >=20 > The first thought is about extending the class definition: along with = functions hashtable we would add virtual functions HT and lookup for the= function will be another HT lookup. >=20 > image.png >=20 > That for sure is better than trap for cpu, but enlarge memory usage at= the moment. >=20 >=20 > --- >=20 > Moreover, it allows us to keep both static and dynamic functions. >=20 > function class::func(){} // static extension class:func() > function class->func(){} // dynamic function $class->func() >=20 >=20 >=20 > --- >=20 > this functions can be found dynamically and it seems alright: >=20 > // a.php > use Models\User; >=20 > function User::getName(){} >=20 > // new User->getName is available here >=20 > // b.php >=20 > use Models\User; >=20 > // new User->getName is NOT available here, because a.php wasn't loade= d and here User::getName isn't available >=20 > // c.php >=20 > namespace Stuff; >=20 > include 'a.php'; >=20 > // new User->getName here you can do it, because a.php was loaded and = functions table was adjusted with getName function >=20 > // d.php >=20 > use Stuff\Smth; > use Tools\Smth2; >=20 > // if it's an app entrypoint > // autoloader loads c.php because of Smth file is found there > // c.php loads a.php > // the extension function User::getName is also available here >=20 > // either is this file an entrypoint or not > // it stores the extension function in the class definition > // so Smth2 now can use the extension function, because it was loaded = "by parent" >=20 > > Very much not. The `use` construct has no bearing on autoloading cu= rrently. Autoloading happens only for classes and class-like things (in= terfaces, traits, enums). If a function is not found, PHP just crashes.= Various solutions to this have been discussed over the years, none of = which ever made it as far as a vote. >=20 > Is this covered by the texts above? >=20 > > In fairness, I think with universal opcache, preloading, and the inc= reasing use of persistent processes, just skipping autoloading for funct= ions and front-loading them via composer.json's "files" block is fine fo= r the 80% case. But it feels like I am in the minority on that position. >=20 > That's what we have now. Can't see any problems. >=20 >=20 > On Tue, Jun 10, 2025 at 11:11=E2=80=AFPM Larry Garfield wrote: >> On Tue, Jun 10, 2025, at 2:45 PM, Dmitry Derepko wrote: >> > Thanks for participating, Larry. >> > >> > On Mon, Jun 9, 2025 at 10:29=E2=80=AFPM Larry Garfield wrote: >> >> 2. Please link to a PR of your actual implementation. In context = it looks like your branch comparison link is to the version you said did= n't work, so it's not that helpful. >> > >> > Correct, I don't have another one. This is big feature, I need a lo= t of=20 >> > time to implement it. I don't want to waste my time if we decide th= at=20 >> > RFC won't pass at all. >>=20 >> Understood. >>=20 >> >> 3. The biggest question that has come up in the past (Ilija and I = have discussed it at length) is, naturally, autoloading. How if at all = do you address that? >> > >> > In the original message I mentioned `use extension` construction. T= his=20 >> > should be enough for solution, isn't it? >>=20 >> Very much not. The `use` construct has no bearing on autoloading cur= rently. Autoloading happens only for classes and class-like things (int= erfaces, traits, enums). If a function is not found, PHP just crashes. = Various solutions to this have been discussed over the years, none of w= hich ever made it as far as a vote. >>=20 >> I toyed with the idea of having extension functions compile to a stat= ic method on a class as a way around this, but of course then you end up= with a file-per-function, and the file name has to match not the functi= on name, but whatever mangled class name gets generated. Not at all int= uitive. >>=20 >> In fairness, I think with universal opcache, preloading, and the incr= easing use of persistent processes, just skipping autoloading for functi= ons and front-loading them via composer.json's "files" block is fine for= the 80% case. But it feels like I am in the minority on that position. >>=20 >> >> 4. The other big question was determining when to match a given "m= ethod" call to an extension function, when the type of a variable is not= always known at compile time. How did you address this? >> > >> > Cannot understand the passage, could you explain more? >>=20 >> > // index.php >>=20 >> function Point.area(): int {=20 >> return $this->x & $this->y; >> } >>=20 >> function doStuff($p) { >> // At compile time, we don't know that $p is a Point. In fact, it m= ay not be. >> // The function will allow any value here, even a non-object, so it= doesn't know >> // if this should be compiled to Point__area($p) or left as is. >> print $p->area(); >> } >>=20 >> The only way I could think of to handle that is to have a method call= "trap" similar to class autoloading, that when hit checks at runtime "h= ey, this method didn't exist, but is there a `use`d function that would = match based on the runtime type of this value?" But Ilija felt that wou= ld be prohibitively slow. It would certainly be slower than just a func= tion/method call since the trap takes time. >>=20 >> And then we get into questions of inheritance, and, well, it gets eve= n messier fast. >>=20 >> One possibility that we riffed on during the pipes discussion (mostly= off list, I think) was using +> for some combination of extension funct= ions and Elixir-style first-arg pipe passing, so that $p+>area() would s= ignal to the engine (compile time or runtime) that area() wasn't a metho= d but a function that should get $p passed to it. That would solve the = "trap" problem, but still doesn't address autoloading, the lack of compi= le time type knowledge, or how to differentiate between Point.area(), Sh= apeInterface.area(), Rect.area(), etc. >>=20 >> --Larry Garfield >=20 >=20 > -- > Best regards, > Dmitrii Derepko. > @xepozz How does it handle late binding? (This is when a class extends/implement= s a class that doesn=E2=80=99t exist yet; so the compiler postpones actu= ally creating the class until runtime when it can run the autoloader, if= needed) should these functions also late bind in that case? =E2=80=94 Rob --4f3f88f9683c4f46b75117d2978836df Content-Type: multipart/related; boundary=8b4cf2e8af174e21b5ab7f1308d4211a; type="text/html" --8b4cf2e8af174e21b5ab7f1308d4211a Content-Type: text/html; charset=utf-8 Content-Transfer-Encoding: quoted-printable
On Wed, Jun = 11, 2025, at 08:31, Dmitry Derepko wrote:
I see.

<= div>The first thought is about extending the class definition: along wit= h functions hashtable we would add virtual functions HT and lookup for t= he function will be another HT lookup.

3D"image.png"

That for sure is be= tter than trap for cpu, but enlarge memory usage at the moment.


---

Moreover, it allows us to keep both static and dynamic f= unctions.

function class::func(){} // static ex= tension class:func()
function class->func(){} // dynamic fu= nction $class->func()


<= br>
---

this functions can be found d= ynamically and it seems alright:

// a.php
=
use Models\User;

function User::getName(){= }

// new User->getName is available here

// b.php

use Models\User;=

// new User->getName is NOT available = here, because a.php wasn't loaded and here User::getName isn't available=

// c.php

namespace St= uff;

include 'a.php';

=
// new User->getName here you can do it, because a.php was loade= d and functions table was adjusted with getName function

// d.php

use Stuff\Smth;<= /div>
use Tools\Smth2;

// if it's an app en= trypoint
// autoloader loads c.php because of Smth file is fou= nd there
// c.php loads a.php
// the extension funct= ion User::getName is also available here

// eit= her is this file an entrypoint or not
// it stores the extensi= on function in the class definition
// so Smth2 now can use th= e extension function, because it was loaded "by parent"

> Very much not.  The `use` construct has no bearing on= autoloading currently.  Autoloading happens only for classes and c= lass-like things (interfaces, traits, enums).  If a function is not= found, PHP just crashes.  Various solutions to this have been disc= ussed over the years, none of which ever made it as far as a vote.
=

Is this covered by the texts above?

> In fairness, I think with universal opcache, preloading, a= nd the increasing use of persistent processes, just skipping autoloading= for functions and front-loading them via composer.json's "files" block = is fine for the 80% case.  But it feels like I am in the minority o= n that position.

That's what we have now. Can't= see any problems.


On Tue, Jun 10, 2025 at 11:11=E2=80=AFPM Larry Garfield <<= a href=3D"mailto:larry@garfieldtech.com">larry@garfieldtech.com> = wrote:
On Tue, Jun 10, 2025, at 2:45 PM, Dmitry Derepko wrote:=
> Thanks for participating, Larry.
>
<= div> > On Mon, Jun 9, 2025 at 10:29=E2=80=AFPM Larry Garfield <larry@garfieldt= ech.com> wrote:
>> 2. Please link to a PR of you= r actual implementation.  In context it looks like your branch comp= arison link is to the version you said didn't work, so it's not that hel= pful.
>
> Correct, I don't have another one.= This is big feature, I need a lot of
> time to implement= it. I don't want to waste my time if we decide that
> RF= C won't pass at all.

Understood.
<= br>
>> 3. The biggest question that has come up in the = past (Ilija and I have discussed it at length) is, naturally, autoloadin= g.  How if at all do you address that?
>
&= gt; In the original message I mentioned `use extension` construction. Th= is
> should be enough for solution, isn't it?
=
Very much not.  The `use` construct has no bearing = on autoloading currently.  Autoloading happens only for classes and= class-like things (interfaces, traits, enums).  If a function is n= ot found, PHP just crashes.  Various solutions to this have been di= scussed over the years, none of which ever made it as far as a vote.

I toyed with the idea of having extension functi= ons compile to a static method on a class as a way around this, but of c= ourse then you end up with a file-per-function, and the file name has to= match not the function name, but whatever mangled class name gets gener= ated.  Not at all intuitive.

In fairness= , I think with universal opcache, preloading, and the increasing use of = persistent processes, just skipping autoloading for functions and front-= loading them via composer.json's "files" block is fine for the 80% case.=   But it feels like I am in the minority on that position.

>> 4. The other big question was determining wh= en to match a given "method" call to an extension function, when the typ= e of a variable is not always known at compile time.  How did you a= ddress this?
>
> Cannot understand the passa= ge, could you explain more?

<?php
// index.php

function Point.area(): int {=
  return $this->x & $this->y;
}

function doStuff($p) {
  // At= compile time, we don't know that $p is a Point. In fact, it may not be.=
  // The function will allow any value here, even a non= -object, so it doesn't know
  // if this should be compi= led to Point__area($p) or left as is.
  print $p->are= a();
}

The only way I could think = of to handle that is to have a method call "trap" similar to class autol= oading, that when hit checks at runtime "hey, this method didn't exist, = but is there a `use`d function that would match based on the runtime typ= e of this value?"  But Ilija felt that would be prohibitively slow.=   It would certainly be slower than just a function/method call sin= ce the trap takes time.

And then we get into = questions of inheritance, and, well, it gets even messier fast.

One possibility that we riffed on during the pipes di= scussion (mostly off list, I think) was using +> for some combination= of extension functions and Elixir-style first-arg pipe passing, so that= $p+>area() would signal to the engine (compile time or runtime) that= area() wasn't a method but a function that should get $p passed to it.&= nbsp; That would solve the "trap" problem, but still doesn't address aut= oloading, the lack of compile time type knowledge, or how to differentia= te between Point.area(), ShapeInterface.area(), Rect.area(), etc.
<= div>
--Larry Garfield

<= /div>

--
Best regards,
Dmitrii Derepk= o.

How does it handle late binding? (This is when a class= extends/implements a class that doesn=E2=80=99t exist yet; so the compi= ler postpones actually creating the class until runtime when it can run = the autoloader, if needed) should these functions also late bind in that= case?

=E2=80=94 Rob
<= /body> --8b4cf2e8af174e21b5ab7f1308d4211a Content-ID: Content-Disposition: inline; filename="image.png" Content-Type: image/png; name="image.png" Content-Transfer-Encoding: base64 iVBORw0KGgoAAAANSUhEUgAAA1wAAAEMCAYAAADQ9LcaAAAMTmlDQ1BJQ0MgUHJvZmlsZQAA SImVVwdYU8kWnltSIQQIREBK6E0QkRJASggt9I4gKiEJEEqMCUHFjiyu4NpFBMuKrlIU2wrI YkNddWVR7H2xoKKsi+tiV96EALrsK9+b75s7//3nzD/nnDtz7x0A6F18qTQX1QQgT5Iviw32 Z01OTmGRegABqAFN4AD0+AK5lBMdHQ5gGW7/Xl5fA4iyveyg1Ppn/38tWkKRXAAAEg1xulAu yIP4RwDwVoFUlg8AUQp581n5UiVeB7GODDoIcY0SZ6pwqxKnq/DFQZv4WC7EjwAgq/P5skwA NPogzyoQZEIdOowWOEmEYgnEfhD75OXNEEK8CGIbaAPnpCv12elf6WT+TTN9RJPPzxzBqlgG CzlALJfm8uf8n+n43yUvVzE8hzWs6lmykFhlzDBvj3JmhCmxOsRvJemRURBrA4DiYuGgvRIz sxQhCSp71EYg58KcASbEk+S5cbwhPlbIDwiD2BDiDEluZPiQTVGGOEhpA/OHVojzefEQ60Fc I5IHxg3ZHJfNiB2e91qGjMsZ4p/yZYM+KPU/K3ISOCp9TDtLxBvSxxwLs+KTIKZCHFAgToyE WAPiSHlOXNiQTWphFjdy2EamiFXGYgGxTCQJ9lfpY+UZsqDYIfu6PPlw7NjxLDEvcghfys+K D1HlCnsk4A/6D2PB+kQSTsKwjkg+OXw4FqEoIFAVO04WSRLiVDyuJ833j1WNxe2kudFD9ri/ KDdYyZtBHC8viBseW5APF6dKHy+R5kfHq/zEK7P5odEqf/B9IBxwQQBgAQWs6WAGyAbijt6m Xnin6gkCfCADmUAEd6iKGR6RNNgjgdc4UAh+h0gE5CPj/Ad7RaAA8p9GsUpOPMKprg4gY6hP qZIDHkOcB8JALrxXDCpJRjxIBI8gI/6HR3xYBTCGXFiV/f+eH2a/MBzIhA8xiuEZWfRhS2Ig MYAYQgwi2uIGuA/uhYfDqx+szjgb9xiO44s94TGhk/CAcJXQRbg5XVwkG+VlBOiC+kFD+Un/ Oj+4FdR0xf1xb6gOlXEmbgAccBc4Dwf3hTO7QpY75LcyK6xR2n+L4KsnNGRHcaKglDEUP4rN 6JEadhquIyrKXH+dH5Wv6SP55o70jJ6f+1X2hbANG22JfYsdxM5gJ7BzWCvWBFjYMawZa8eO KPHIins0uOKGZ4sd9CcH6oxeM1+erDKTcqd6px6nj6q+fNHsfOVm5M6QzpGJM7PyWRz4xRCx eBKB4ziWs5OzKwDK74/q9fYqZvC7gjDbv3BLfgPA+9jAwMBPX7jQYwDsd4evhMNfOBs2/LSo AXD2sEAhK1BxuPJCgG8OOtx9+sAYmAMbGI8zcANewA8EglAQBeJBMpgGvc+C61wGZoF5YDEo AWVgFVgPKsFWsB3UgD3gAGgCreAE+BmcBxfBVXAbrp5u8Bz0gdfgA4IgJISGMBB9xASxROwR Z4SN+CCBSDgSiyQjaUgmIkEUyDxkCVKGrEEqkW1ILbIfOYycQM4hnchN5D7Sg/yJvEcxVB3V QY1QK3Q8ykY5aBgaj05FM9GZaCFajK5AK9BqdDfaiJ5Az6NX0S70OdqPAUwNY2KmmAPGxrhY FJaCZWAybAFWipVj1VgD1gKf82WsC+vF3uFEnIGzcAe4gkPwBFyAz8QX4MvxSrwGb8RP4Zfx +3gf/plAIxgS7AmeBB5hMiGTMItQQign7CQcIpyGe6mb8JpIJDKJ1kR3uBeTidnEucTlxM3E vcTjxE7iQ2I/iUTSJ9mTvElRJD4pn1RC2kjaTTpGukTqJr0lq5FNyM7kIHIKWUIuIpeT68hH yZfIT8gfKJoUS4onJYoipMyhrKTsoLRQLlC6KR+oWlRrqjc1nppNXUytoDZQT1PvUF+pqamZ qXmoxaiJ1RapVajtUzurdl/tnbq2up06Vz1VXaG+Qn2X+nH1m+qvaDSaFc2PlkLLp62g1dJO 0u7R3mowNBw1eBpCjYUaVRqNGpc0XtApdEs6hz6NXkgvpx+kX6D3alI0rTS5mnzNBZpVmoc1 r2v2azG0JmhFaeVpLdeq0zqn9VSbpG2lHagt1C7W3q59UvshA2OYM7gMAWMJYwfjNKNbh6hj rcPTydYp09mj06HTp6ut66KbqDtbt0r3iG4XE2NaMXnMXOZK5gHmNeb7MUZjOGNEY5aNaRhz acwbvbF6fnoivVK9vXpX9d7rs/QD9XP0V+s36d81wA3sDGIMZhlsMTht0DtWZ6zXWMHY0rEH xt4yRA3tDGMN5xpuN2w37DcyNgo2khptNDpp1GvMNPYzzjZeZ3zUuMeEYeJjIjZZZ3LM5BlL l8Vh5bIqWKdYfaaGpiGmCtNtph2mH8yszRLMisz2mt01p5qzzTPM15m3mfdZmFhEWMyzqLe4 ZUmxZFtmWW6wPGP5xsraKslqqVWT1VNrPWuedaF1vfUdG5qNr81Mm2qbK7ZEW7Ztju1m24t2 qJ2rXZZdld0Fe9TezV5sv9m+cxxhnMc4ybjqcdcd1B04DgUO9Q73HZmO4Y5Fjk2OL8ZbjE8Z v3r8mfGfnVydcp12ON2eoD0hdELRhJYJfzrbOQucq5yvTKRNDJq4cGLzxJcu9i4ily0uN1wZ rhGuS13bXD+5ubvJ3Brcetwt3NPcN7lfZ+uwo9nL2Wc9CB7+Hgs9Wj3eebp55nse8PzDy8Er x6vO6+kk60miSTsmPfQ28+Z7b/Pu8mH5pPl879Pla+rL9632feBn7if02+n3hGPLyebs5rzw d/KX+R/yf8P15M7nHg/AAoIDSgM6ArUDEwIrA+8FmQVlBtUH9QW7Bs8NPh5CCAkLWR1ynWfE E/BqeX2h7qHzQ0+FqYfFhVWGPQi3C5eFt0SgEaERayPuRFpGSiKbokAUL2pt1N1o6+iZ0T/F EGOiY6piHsdOiJ0XeyaOETc9ri7udbx//Mr42wk2CYqEtkR6YmpibeKbpICkNUldk8dPnj/5 fLJBsji5OYWUkpiyM6V/SuCU9VO6U11TS1KvTbWeOnvquWkG03KnHZlOn86ffjCNkJaUVpf2 kR/Fr+b3p/PSN6X3CbiCDYLnQj/hOmGPyFu0RvQkwztjTcbTTO/MtZk9Wb5Z5Vm9Yq64Uvwy OyR7a/abnKicXTkDuUm5e/PIeWl5hyXakhzJqRnGM2bP6JTaS0ukXTM9Z66f2ScLk+2UI/Kp 8uZ8Hfij366wUXyjuF/gU1BV8HZW4qyDs7VmS2a3z7Gbs2zOk8Kgwh/m4nMFc9vmmc5bPO/+ fM78bQuQBekL2haaLyxe2L0oeFHNYurinMW/FjkVrSn6a0nSkpZio+JFxQ+/Cf6mvkSjRFZy fanX0q3f4t+Kv+1YNnHZxmWfS4Wlv5Q5lZWXfVwuWP7LdxO+q/huYEXGio6Vbiu3rCKukqy6 ttp3dc0arTWFax6ujVjbuI61rnTdX+unrz9X7lK+dQN1g2JDV0V4RfNGi42rNn6szKq8WuVf tXeT4aZlm95sFm6+tMVvS8NWo61lW99/L/7+xrbgbY3VVtXl24nbC7Y/3pG448wP7B9qdxrs LNv5aZdkV1dNbM2pWvfa2jrDupX1aL2ivmd36u6LewL2NDc4NGzby9xbtg/sU+x7tj9t/7UD YQfaDrIPNvxo+eOmQ4xDpY1I45zGvqaspq7m5ObOw6GH21q8Wg795PjTrlbT1qojukdWHqUe LT46cKzwWP9x6fHeE5knHrZNb7t9cvLJK6diTnWcDjt99uegn0+e4Zw5dtb7bOs5z3OHf2H/ 0nTe7Xxju2v7oV9dfz3U4dbReMH9QvNFj4stnZM6j17yvXTicsDln6/wrpy/Gnm181rCtRvX U6933RDeeHoz9+bLWwW3PtxedIdwp/Su5t3ye4b3qn+z/W1vl1vXkfsB99sfxD24/VDw8Pkj +aOP3cWPaY/Ln5g8qX3q/LS1J6jn4rMpz7qfS59/6C35Xev3TS9sXvz4h98f7X2T+7pfyl4O /Ln8lf6rXX+5/NXWH91/73Xe6w9vSt/qv615x3535n3S+ycfZn0kfaz4ZPup5XPY5zsDeQMD Ur6MP/grgAHl0SYDgD93AUBLBoABz43UKarz4WBBVGfaQQT+E1adIQeLGwAN8J8+phf+3VwH YN8OAKygPj0VgGgaAPEeAJ04caQOn+UGz53KQoRng++jPqXnpYN/U1Rn0q/8Ht0CpaoLGN3+ C+GXgxiAF8ghAAAAimVYSWZNTQAqAAAACAAEARoABQAAAAEAAAA+ARsABQAAAAEAAABGASgA AwAAAAEAAgAAh2kABAAAAAEAAABOAAAAAAAAAJAAAAABAAAAkAAAAAEAA5KGAAcAAAASAAAA eKACAAQAAAABAAADXKADAAQAAAABAAABDAAAAABBU0NJSQAAAFNjcmVlbnNob3TR84VfAAAA CXBIWXMAABYlAAAWJQFJUiTwAAAB1mlUWHRYTUw6Y29tLmFkb2JlLnhtcAAAAAAAPHg6eG1w bWV0YSB4bWxuczp4PSJhZG9iZTpuczptZXRhLyIgeDp4bXB0az0iWE1QIENvcmUgNi4wLjAi PgogICA8cmRmOlJERiB4bWxuczpyZGY9Imh0dHA6Ly93d3cudzMub3JnLzE5OTkvMDIvMjIt cmRmLXN5bnRheC1ucyMiPgogICAgICA8cmRmOkRlc2NyaXB0aW9uIHJkZjphYm91dD0iIgog ICAgICAgICAgICB4bWxuczpleGlmPSJodHRwOi8vbnMuYWRvYmUuY29tL2V4aWYvMS4wLyI+ CiAgICAgICAgIDxleGlmOlBpeGVsWURpbWVuc2lvbj4yNjg8L2V4aWY6UGl4ZWxZRGltZW5z aW9uPgogICAgICAgICA8ZXhpZjpQaXhlbFhEaW1lbnNpb24+ODYwPC9leGlmOlBpeGVsWERp bWVuc2lvbj4KICAgICAgICAgPGV4aWY6VXNlckNvbW1lbnQ+U2NyZWVuc2hvdDwvZXhpZjpV c2VyQ29tbWVudD4KICAgICAgPC9yZGY6RGVzY3JpcHRpb24+CiAgIDwvcmRmOlJERj4KPC94 OnhtcG1ldGE+CjyrvFYAAAAcaURPVAAAAAIAAAAAAAAAhgAAACgAAACGAAAAhgAAgROreh/W AABAAElEQVR4AexdB3gURRv+aKEllCSUEHrvvfcuCIjSrAgKVhDlV4oKUuy9ASqioIKigtKl 9957L6GTkN5IQoD/e+fYy9zeXr/ABWZ4yO1O33d37+adr2UrXab8LcoCKbhIUTHLyKsRWWC2 aooKAYWAQkAhoBBQCCgEFAIKAYWAQoAomyJc6jFQCCgEFAIKAWcRyJYtG5UpVoFCgkvRuSun 6WLkWWebqnoKAYWAQkAhoBC4LxFQhOu+vO1396Jz5sxJzVu0o5w5chpO5OLFc3Ts2CHDsqyS 6Z83gEKCSovphsdcpPik2EyfeiH/whQYUIRy5MhlMdaFiNN0Le2aRd6dPsmXOx+FFilnc9iL V89QcmqyzXJV4DsIVC1dm7o06WWe0B8rp1J4zCXzuTrwDgLlileinDn9KPFaHF2OuuCdTlUv mYpA8cBQCshXiG7cuE6nLx93eqySRcpQ3tz+hvWvpSbShatqU8MQHJWpEMhCCCjClYVu1r0y 1UqVqtGo0e/ZvJy1a5fTzN9+sFmeFQoqlaxB3Zr1FVNdvWsh7T+9K9OmHVggmDo26EElgssY jvHn6ml3fcFWp0Ijale/m+H8kDl33S90PuKMzXJ9QdHCIdSoaiuRve/ktiy1ILmbc/fG2K3q dKYGlZubb8n6vUtp94mt5nN14DkC2bNlp2F93hEdnbx4mBZt/svzTu+zHnLyxlPHhj0oR/ac /N1ymvaf2pnpCDzWYTAVDyxJSSkJ9OPCz50eb1C34UzUChrWP8+bUXPX/mJYpjIVAgqBrIOA IlxZ517dMzOtWKkqjR79vs3rWbNmGc2aOdVmeVYouFOEC+pdT3V6kYIKFrMJS5YgXGtn0Pmr YTavQV9QvUxd6tz4YZG9fPs8Onx2r76Kz57fzbl7Y+zggkWpZ8snxQIxJiFSkOXEawk+i3dW nJgiXJ7ftfx5/Om5Hm+Ijg6F7aEVO+Z73qmDHjKFcDFZnLvuVwcjq2KFgELA1xFQhMvX79A9 OL+8efNRufKVLK4sNLQ0PfroQJF3twhX7z59hZrjuXNnacuWzRbzc/XkThEuqLA81uE5Mb3Y hCjacngtRcdftZhubGI0XU9Ps8i70yd5WaXQP28Bi2Grl61L9So1FXlzFeGywCazTrxBuLS5 5cuTn5JTkrRT9elFBBTh8hzMrES4ggoUoezZc1hcdN92z5Ifq5RCOqcIlwU06kQhkCURUIQr S962e2/Sdes1pqFDR4kLu1uE6/sfppGfXy7atm0r/fD9dx6BfKcIl2xPs3H/ctp5zDOi6NFF u9i4cbVW1LxmB9FKES4XwXOzujcJl5tTUM2cQEARLidAclAlKxEuo0t56eHRlDtXHkW4jMBR eQqBLIiAIlxZ8KbJUy5WLIQefexZOcvm8YkTh+m/Jf+ayx97/FkqWjREnC9c8CedOXPSXCYf dH6gJ1WtWlNkrVyxkA4f3i8Xs2F3TurUuQfVqFGXChQsRHny5KWE+DiKjo6k9euW04EDeyzq G51kVcIFw/ZqZetQIHYoWb0vhqVMe9ieJU/u/NS9WT9xqfZsuMqFVKLKpWpQoYAgypMrL0XG hdPlyPPC4BqSKUdJJlzLd7BqXZjzqnWlipSlGuXrU8H8hSgfq99cY6cVCclxdPz8YTpxwdhp SYmgUlS7YiMxrd1M7iJir1hNsUn11lQ4IJjSWKq2etciq3ItwxXCVb5EFYGT1jYgXwEKDS4r Ti9GhvG847Ui8+eWg2soLinGfO6NA+xC1ypXn0oVK0cBeQtSrpy5KP1GusDtXPhpOnBmN928 ecNiKG/OvZB/INWr3FQ8bwEsMUxn4/z4pDi6yEb1+05tF3ORB/fG2AXzF6ZmNdvJ3ZqPMf4q vse3bjmOLlKAnzNINPGu4JlLu54q7s+ZSycyRSW0dvkGVIKdEUDtERjVKFeP7Xly0LFzB2jv ye1Uu0JDqlK6Fi9qc9OZyycIz8vNWzfN1yYfuPqeluR3qya/WwwMHWD7zbq4bn7Hz1w5SduP rKcQtvOpU7ExvydBwuHIhn3L2O4nQ1ooEy68i2v3/EcNq7ZkRzwlKY9fXopNjOF7Hka7+B20 NWdt/q7OHe2CWUW5YdUWoosDp3bR9Rtp1LBKC9P3XPbsFJsQTacvHaOD/LzbSnCUU5ef1SIF i7N0O0Bgn3o9RdwL3ANXnErYGkPOh9OgpjUynlPYblUqWV1UgfT/Cjsv0qfj5w4azgOq2tXK 1KEKJaqy6mwBQXwSUuIpjnHff3KHTScxmkph4rV4mvHfNwTb1fKhVcg/TwFK5PZXY8PF/XdG Muwu4cLca5dvSCWLlhXPF97N8JjL4nfl1KUjlJKWoofB6rx8+fL00EMPU+kyZejy5cu0ePEi OnzooFU9laEQUAg4j4AiXM5j5ZM1y5WrSG+P+dipuR08tI+++mKiue7TA16k1q07ifOVKxfT 7D9+NpfJB+++/w2FFA8Vi6qJE9+g8+fCzMUlQkvRkCGjCMTPKOHLfsOGVfTrL/YlRlmRcDWt 0ZaaVGtD+IGTE6754JldVIt/9JCMCBcW7p0bMZFlj29GKYW9Ci7Y9AddijxnVGzOc4dwYTEH L3OVS5lItLkz6QDkYd7GWVbkwZnx+rZ7hslQGfaMmEw/zP9E6tXy0BXC1bhaS5aGdbTswMHZ 7FU/0pVo60WWg2Y2i/OzCl3vtgOFJ0hblaDOOWfdDAtVO2/NvUHlZtS8VkexcDUaP57J5T/r f+PFeAZR98bYstqq0biT/nnPiujp62Hh2aJ2J6EipS/D+ZXoC7Rg4+9e9VT5QONHxKIZi19s KOC519LOY5sEgdDO8QnCumb3EjlLqHm5857WZFLeseFDoq/45FgqwJ7rtHSY7YnKhlSmfLwp o6WrsZdp1ooMR0Ey4Tp+/iAT1MJUjNWH9ely9Hn6d/1MQV71ZZ58x2AjqWerJ0WXsI+szE6A 4IRCn05cOEyLt1g79MBmTvcWjwmiom+jnYNILtk6xymyrrWx9wky+mj7wfaqWJVtOrCCdhzd ZJEPcvgwX3swE0WjhO/3ncc20qYDq6yKNcKVwPf85MWjZpVpuSKex4WbZtskbVpddwgXnpOu TXsLxx1aP/JnZNwVfl5+syD3crl2PPSVV6l+fd4wuJ2OHz9BH31o29GVVk99KgQUArYRUITL NjZZoqRkqTL0yitv2pxr4cKBZt1wPeGqWq0mvfHGBNH24sXzNO6d16z6KV+hMr311oci/xwT rYkTXreoM2bsx1S2bEWRd+1aMl26dJ6SkpKoTNnyVLBAxiJjxowptJGJl610JwkXdu+e6v80 7du3jzasX8+SuCgxrSnfTWXpXG7avHkTTfvR5LSjeo2a1Lx5cyG1m/Tt1+bpw9sbbKe0RRzc rp8PPyXIVzleTMmLEyPCBYkByBpSUkoiHb9wkFJYwlSkUHHeVa0m+sFu8LwNMy08DILwVCpl 2rVFW6jNwCsWEtzPWzkvYMHDmj2LLfLlsSGhwGIPkjlck7zIwKJi4/6Vom/tz90iXJBW1Jc8 4+XK5cfXHiCmBZyuSdIBZN7if/M2zPKqhOvBpn3MJBVjXmAJQ1R8BBXKH8i7yeXMC2js/IMs a8kbcy9dtDz1avO06BILvmgeF9JFeDaD1BGLa6RLUefor9UZGyfeGBvSDk1aKwbhPyAwfiwZ QnJEuCDtwdy1dyWKpbiRPH/0G1TAFNAe/ZxhN9rzmXR5K2mEC/1hAwGS0DoVm5jv0zm2jYGU qE6FxuJ6IKn8fv5HFuRRfldceU9lwgUJGyTPVUrXNL9fsYlRdOjMHiG1LVLItFmFdz2MJWBI MuG6cTNdeNq7HHVeSFKBG6SEWjJ6T1Hm7tzRViZcOIfU9syVE0zsUqg0x2DT3j2UgTSBFMpJ 9roHqTnskIBf0cIleDOmtPn7EZK9Xce3yE3dPsZ3Z7emfc3ts2XPxkQ1UJxj/kahObYeXkdH z+03t8FB77YDqNTtEBb4Xo/gkAfXUpPEJpLsSRAbBHopnUa40A/GxLVf4Dh1kEyH4D29Tfr1 7ynq65M7hEueO77X8TxBAlqav5+0MCXYFPprzU92JV3jJ0yk0qXLmKcUHR1Nb7w+3HyuDhQC CgHXEVCEy3XMskyLGjXrsvRpJNsl5eYv/5s0kz3/rV+3wmL+738wSUinsIh7990RdO7sGYty qB127NhN5C1hdcR/5s40l8vu3RMTE+iD90dTRESGitmTTz1P7do9IOofPLiXvvryXXNb/cGd JFxPPvU0dehgsh26fj2djhw5TKtXr6QBA56hwoUL06pVqyg+Lo6aNG1KJUqUEFMFfmPHvM3q FaZ4Q/JibvvR9bT10DqzNAjE5YmOL5gvUU+4ICl55sHhwkFHXFI0/blqmsXOvkxqoI60it3K a6l5rfbUuGpr7dSpT72XQm0xhHv+D9yx86JTS9iZhhQHCYuFnxZ/KY61P/LcbKkwZoaESxtf +7wbtkgvsk1FHrapAEmFupBMbnFP+3d5RZRf5/If5n9ssXDX5o1Pd+Yuk72th9eI503rMy+r mPXvMtRMJH5Z+q0g0Fq5/OnO2HJ77ViejyPC1afdQCp5W/1z6+G1PPe1WjeCcPVr/6xZEuLN mF7aO4rn/OclX/LzHE+t6nRil/YmVbmfl3wlFuEtanUwhxiYufw7odaLCXrynsqES/OiWZ43 Yh5q+YS49pU7Fwh1PASQfqR1f5Enu9eXCRcKtx1ZJ1QeRUX+A5INEouNnbT0VJry74dakfj0 ZO7oQE+45qydITYYUAaJvibdxzkW9SCLWpIlonrJHepAxRFeLpGwaYG+MyO5Y8MVyKrQT/O7 hASCOHP5FKFqrc2vWU1oNbQVpyCZIJtykgnXWd6AgyQL3xdIkJz14nsdeHuT4a81P9vVYHCV cMl2w6dYugbJo6xu2oFDh9TijSukpdv+sSKaouD2n+7dH6JHevUS9xpZK1esoN9/z7jHcl11 rBBQCDiHgCJczuGU5WpBxe/1ERMosHCQmPuyZQvo779+sbqOJ596jklRF5G/dOl8mvP3rxZ1 Jkz8kuBBEIRj/LjhLMG6YC4vVChQBDCGRt3FC+do794d5jIchJYsTRMmmBbsV8Iv0Zi3XrEo l0/uJOEaMPAZllq1pFy5cpqngEWZXjXQXMgHMTEx9Ntvv9LePbtF9qPtB4kdS0g6oDYn/7Ch Qrv6D4qdcxzrCZe88Fq9e5FhfJjHWXoGFSLYdGERqCWoZgnbkNsZMKouwGokSMm8C5vE6ir6 tIzdpqMfLeGHGXYrqA9pjD71f+Bls+QBO/6yzv/9SrjwbAzr/Y54Ri7yjvXfa6brYROYwW4F 6RJLI27obLm0Bu6QHkiJsEuO5/QI78jr7cTkxZSRxMGTsbW28qezhAu4YeHolzO31bOs9Se/ K2t2L2bVPsvvEa2eq58a4UrmhfPUhZ+J5rDLQT4kFyDFSFCtxfUgyYtgT95TmXDNWvGdsN2B V8fne4wQ42jEEgQeRB5py6HVtO3wenEsEy6ooP28+Cur7xjt+tBAI4+iMf/xZO7oQyZcRnHA QB4GdfufeB8gwftl6SRtaIu2O45uMFS9K8FSrhws7cHmhDfVfs2T4AN3CBektrD7ysb/IL3W B5zGdQ/u/roYBup5M5d/Lw/JWg+mOFzI/G3ZFNGHXEF+LrCRhg01W8lVwiVvJmBDSFYtxhh4 1p576A0hLd1/eqdd+1rUL1euHFWvXpNOnjpBx44eRZZKCgGFgAcIKMLlAXi+2tTPz49GjnqX NFW/PXt20ORJHxlOV46JpVcZLF2mHI0d+6n4UQ0LO0nvvTvKsA97mR998j0FBxWh2NgYVkkY bLPqnSRcmERQUDDbr7WhOnXqMDEsSTlymFSy5AkmJyXT8RPHacf2bVZu4gd3/59wc270o4s+ 5B9WPeGC8XlLtmdB0kufRCb/QYwpLMyxwP6OSQ8cDBglZwiQUTt7ee05QHFtJnZIM/77Whjo a/WdGe9elXBp9xyLRBCD4+cPmXevNXyc+XSHcDnqVyYN+udNbuutsZ0lXLApeebBV8UUjpzd R8u2/ytPRxzDKQGcEyBBTdKR3aKo6MQfjZAYE64M+0IZO5lwefKeyu+/p4QLkhLY3egTnNM0 q9FeZP+7/lc6y2qTWvJk7uhDJlzbjqxl6dparWvz5+MdeVOocCil8KbT9/Myfl9kKRGcVazi TSU4ddFvSpk7yqQDdwiXM1MZwBIwOAWCbR6IsJw0wgWHQVP+/UAuEsdQp4S7dyRoRmw+sFoc G/1xlXD1ZOkp1NmxCfiddD/kvgd2fYU3boKEmuTvK01q83K5OlYIKAQyDwFFuDIP27vW8/Mv /I8aNzapzYBEffrJWIJ9la008b2vqURISSspVp++/alLl4dFs4UL/6b582YbdvFQz0cJ6oUh JUpSXvZQKCeoM2KX29cIlzzHggUL0oiRo83qgyibP38eX6/14lBr91yP14UdA4zW/1z1k5Zt /pTVO/QLYNm24vzVM3SDbUf0Cd7LNPuDHxd+atPI2RkCpO8b51DrwU4u1H/ys7c77OhqKUeO nGbHDIpwaahYSi2RCzKclJIg7MTgDfFCeBhLDI+KBWhGK+sjd0kP7J1qVqgv7lnhAPaKKd2z bOw5Ltdtpwb6502egbtjy33g2FnCBancwK7DRPO9J7cJb3v6vjLr3FPC5cl76k3CZSRhAmZw otKqjkllez7bK8LGSkuezB19yITLlp1VJ3b6E8LfHyAXs1ktWk5PdnqB7VFNtmnIh7QXjiTg LTI64Sqdu3JKzBfvUGYlTwgXNAlKFSvPhDKEtQEsf9NycWws/KbZI1z4Xvhx4edWl1aU7cye 4ED1SLZs77RGrhKuPmx7VpJtz6DCCFVNowQ7MmhF4B78unSyURWVpxBQCGQSAopwZRKwd6vb 7j360sMPPyaGj4mNpi8+G892RxftTke201q0aC7N+9dkuP7OuE/ZcLa8UF8aO+ZVCg+/bNEP 3MG/8OIbVK+eSRpiUag78WXCNZBVDFu3aStmnJx8jfLly0upqWn07TdfsQv8Q7orMZ16i3AZ dq7L9DbhgiOFtizF0gy4dcNZnCrClQEHVHIa12gjXC7LTlEyapBYhC3e/JddD2TukB54YOvR 4nGznZY8pv5YES4TIt4kXHqMjc7l99SXCJfRXPV58txR5gzh0vchn2PDqGWtTlQhtKqcbXF8 gTeb8K5AvTMzkjuEC0SqE3uXrF62nsMp+SrhcjhxrqAIlzMoqToKAe8ioAiXd/G8q701bNSc Bg9+VcTFSk1NoSlTPqVD7KzCUYJr+bfe/kjs2p05c4Lefw/SnpI0nu2vsvPO+enTx9khxptW 3TzS6wnq1q23yE9gpxkH9u+igwf3UPp1k5EwCp5gG7FCBQv7rISrXbv21P/pAeIaLl68yE5B 5tDQV4YJLKKiohiLiTz3WFEu//EW4drP9irJqYly1xbHkH7tOr7VymZHq+SqhAsezp7q/JJo jp3QkxePCNU4uKHXEtSREL8JSREuDZWMT3gqg5vsQgGBQgqJmFKwo8NiDSmCvYP9Lrn4zmhp OnKHcGnqjOgBKmaIYyTbaJTm3fim1duKARThEjAIWy3YbLmrUihLiVx9T32JcLk6d6DnKeEy 3QESccPwbELSiXcEn7KHQyNX/FpbTz/dIVz12Itlm3pdxdCQUuE9Q4w22R6zK4fUCGA3/75K uGDfCXVFeyk+MS5TYt/ZG1OVKQTudwQU4bpHngDYWw3/3zgK8A8Qqk6zZv1Ia9csc/rqNOcY N27cYG98w4QzjO7dTYbk81iVcBGrFOrTiJETqUqVGiL7F46ztWG9pQtxFGgxvHxRwhUSUoKJ 5ljKnz+fwGzypG9p9+5dTLgyYpDs3rWLJk36Rn/ppBGucI7z9AfHe9InBFTt2sRERvUL4KYs JWlavZ1oIntF0/fhzLmrhEtWQ9p9fDOt37fcahjZiYE9wmXL6FtzKOLNOFz6SbpDWvR9ePMc qpmQqMC2A+nXZZPYdXuk4RCuzl1WQ0K8Kr36Fgaxp8IqT8LVseW28rE7KoXOGOrLY3h67KmE y5P31JuE6xSrqcLbnT41rNKcbUE7i2y9SqEnc0eH3iJc+jnjHM/qA2yjCikxHIJMW/SFUTWP 89whXA+xFFnbbEJoByOnQpq6pD3CBYdEUxd8anUNxdgt/uMdnxf53lYphNdKhI+Ad8UfbzuJ sZqAylAIKATuGgKKcN016L03sL9/ARo5+l1hh4VeV6xYRH/OtvaiZm/Evv0G0AMPPCSq/Msq hTVr1hN2Wenp6fT2269QVGSEVfPPv/yZY20VpOvX0+iVof0JdfXp629/pfz58rsk4VrPxM1R oGT9OO6cw26rWrVqounmTRtp2jQTcYJDjTFj3yHYdiFN//knDt5suWP4NHvyg3tfWwsGOeCs nnDJJGnxlr8JAUDdTXJftty0y30jiKumLjOX3THLLuG1evKiQ0+4ENAYTjGQbHkg08govHzB U5etJAc+nsfBW8PCT9qqapXvLeJg1bGNDKgTaoFnsdBC3DJ9kiUithZraOPq3GFP0o5VQJFs OTCQibT+eRMNb/9xdWy5rXzsLOHKwfHBhjzylogTZsv5A1xVa9eHZ2rLwTXyUG4fe0q45HfL 1ffUm4TLlsS0LUti6rJEBun3lT+wI4QMlW9P5o7+PCFcBVjiW5gdMyBh7tc4vqA+afZGsOFC WAFZgqSv6+65O4RLkyTDMQ6cXhjZmD3/0Aih2muPcGHOU+Z9aOXsqGJoNere/FFxSRt4s2sX b3rZSpoNly2vqPp2HRv2YGdNDUT2dzx2qg1HS/p2ts6LFS9utsmOuBpByRxfUyWFgELAfQQU 4XIfO59p+eprY6hWLZPO+b59u9j26AOX51aqdFl6553PhFrU0aMH2SVsRcqdOw+dOHGEPv5o jGF/mvQKhdOnT6ZNGy09LnXq1IMefWygaOtIwoXxx40zGRlfvHiOgzAPF+0y80+Hjp2o1yO9 KSExniZOnGDxg9K8eQsaNPg5Cgs7Q7/MmEHnzp21mErPlo+z4wmT2h1chONHUUuwjXqy84tm 1+r6BTACdD5523AaTjPmrv1Fayo+sWDpx56s/HiRDzfvsstli4p8Ii+snCFc8iJt57FNHNh4 hUWXsL1AQGcYViPpCRfcyb/0sEm9FAsOGF5rcWZQX/b4BiKJhaqtVKNcPbaX6CmKbUnbbLWt wAuXHrcXLnfCGYPs/MHWAlgmqvM3shMDVkUySq7OvSI7N9ECD1/mwMZ/SoGN0X9OdnLSj8MU FL3tpED/vMlzcHVsua187CzhQhvNqxsW1fDKKRMDlPdnFdcgVnVFskdURQUX/nhKuDx5T71J uLDo/xsxmzjUgJZAZKEaDIkqyiczOZDfQ0/mjjE8IVy1KzSk9vW7i6kavZuY+7PdXhOqhfBc OOmf922qTGvX684nnFu8zN9VUPW19c7q+32CnX1o75HROyxrLjgiXJsOrORNqY0WQ2jPJDIX sNQSTnZsJc2jIO7rtEWfW4TnMGojb7ro47ahPt59SBY5khqrkh8mxIezlyZMfI9KlSolqixc sID+/XeuveqqTCGgEHCAgCJcDgDy9eLWbTrR00+/KKaJH961a5ex17sbhtOGJGrunJmGZcgc N/5z/oIta1E+d+4s+m/JPxZ52slLL4+gBg2aitOoqKu0c+cW2r9/J8e38uP8ZtS0aStxjAqO CBfqfPHVdCoQUACHTHDC6OTJI8JzosjgP1GRV1l6t1A79cpnqVKlmVjm5rGsF8cNGzbia9ph OI68qID6yIkLh+kMx7TCPWhYrSWVYm9RWjJaAPdmj1JaHez87zm2hb3bXRM2DzXK1SfYWiEd ObuXXWnb/mF0lXDJ9eE+GHFgMG/sQpcqWo4aVm3J9gkmyR7G1xMu5MnEIjzmIm0/soFS01LE 3BtVa80xl/xQzeHiObhgUSaeL4kF0Y2b6YKgXI29JNpqfy5EnLMgs1o+SOmzD74mTrEgAbmL TbSUOu08utmrO+cv9BxFCDKMdJRjYZ25dILjK12mwgWKUNniFQkEEmQ7ne3uprJnSVuu/F2d O9ymP9P1VSElwtiHw/bwgukoqyxGMFEpzkF7W7DnwpIoEsnoedPKXB0b7aqUqsX2aoW0LsRn xdDqZi90CMR8ixfOWrqWes0itlyT6q3YfXkHUQw10128CA1naQw8wMGpQkhQaVGG92jGkq+F 1zutL08+tcWtuzZcGNvd99SbhAvzwDVsObSGouIiKLRIGapUqoaZGMD5xBzdpo0nc0dbTwiX rDYHD4YHz+yic5dPUQJvHsH5S8WS1fh9qYRhOM4Ve3ldbe3lVRR64Y9GWtAVvmcvRYZZ9Hri whEL1V9ZSgSX9gfP7BbfSwgbAq+udSs1NXsDdUS4sMEAtcGz7JERG1loX6ZYRfF9h/fg1/++ teswpFuzfqINJoy5nLh0hLVIUs3zx+/8zmMZEjLEeXuq88tC+gYiC9s9hK7IyQS3RJHSVIel oXn9THECV+ycT4fO7DH3ZXQw5buplCdPblH09Vdf0r59e42qqTyFgELASQQU4XISKF+t1pnV APuxOqAzCa7hofpnK/Xu8xR17fqIufg6O794680hHPTXciGrVQgJCaVRb35A/vn9tSyLT3hJ vJ6WRkWLFneKcDm6FlvOOywGvUMn2DVFcOKirJNvlEDA8AOLZLQAxg/wo+0HU57bC3ijPuKS osVCKiE5zqhY5MkEyhkJFxpp6jxGnYL4nI8IEwQC5UaECwTgiY4vUt7bQX6N+jnEpGDFjvlG RRZ5csBei4LbJ1jMbz20zqiIOrI3MSxsbSVvqNXIfUP1DfN1lIx2l/VtXJ27rK6o7wvnsPPR YlkZPW9yG1fHfqR1f14oVpC7sHuMxeGMpd+a6+Bd6dN2IEEd1VbCAnERdvwvH7dVxeV8bxAu d99TbxIubCTA4YSRV1E4SABhCY+x3KgAWO7OHW09IVxo34UdS+C7yV7CPV+w4XeXVInt9WdU JqvQGpXrg4TnZ9KCTaB8eYx/0+I5/MN1JpGQyNojXIhNdpM3Xmz1s27vf7TnxDajKZnzcP9g 74Wg4UYJao+TWTooJ2COGI5Gz4pWL4zDByzY+IfduGjly5dntfpxogk89g4d8pJh+BKtT/Wp EFAIOEZAES7HGPl0DUckRZ48PAkOf3WgnGVxXCK0FI0f/4XwTIiCY8cOcQyvdyzq6E8qV65O iNdVvnxlc9G1a9fo/PkztGzZfOrZ83F2LV+WoqMjaeSIF8x1bB20aNmeOnbsTkWKFOXdNZM0 Qat78uRR+ujDt7XTu/6Zxy+PUJ2Bypf2AweSdIolRhcizrIkyOSe39ZuIohLm7pdRbBKqNlo CT/oCBK7/ch6thFL0LINP2VnCUu3/SMkL4YVpUzMu3nNDoKsZL89LqQykFYdPL2bbdOCWWrS SrT4afEXHD8nXmptOvTPG0BQTyzPapVaHyiBwfa2w2stJBxWjaUMLMbhGQzSoYLswUzvbn3z wZWMg6VajtYc40K6g0UGAuzK84CkETYUwNKbCV7vGrEEM5DjYOkT7v3Oo5uE1FBfpj93de4a To2rtzGTdFxjVHy4ICmXrp6jh1s9JYax9bxpc3B17J4tnxRx27T2jj6NbPdMYzZnCUFzs5QQ /eAaoI4L1dYr7IDGm8ke4ZLjJMlqsHLgY20u7rynjgjXzOVTKJKlVbANfPHh0WKoLYdW87tj shXF98mwPqbvXqh/nbp4jIORN2A7wpLm75qYhEhasXOB3UDR7swdk/GUcEGdr0GVZjznxlah DHDPEb9wK9vqnYs4o8GcaZ/4jmzI3xNQv9Sk79pgCzfPZmwt1frw/de27oME74paghdXSOO2 HV7Hsc86i80DEOEZLKWSkxb4GM/Xos1/UmOW+IcWKWseF/3gWYfkzJmEucC9flGWBvtzvEQ5 2QpwXIJjbbWp14UloCWENE1rA3vj/ae20y7WpnBkM9ehQ0d68inT5uyZM6fpXVa5V0khoBDw DAFFuDzDT7W+jUBgYDCVZbuvtLRUOnrkgKEDjXsVLPyIB7F6HBb3WES5mrAYDWK1NKirJSKQ bmKMwx9EV8cwqg/bn0AeN1cOP7FDLtuAGNU3ygNRxLXn5l3YWCYcRuTMqN2dzoP3rjqVGrs0 7EGoW9qww4ItWyF2DAAJJRY+WHylsFplZicQL9iTYfEFYpOckvUM2UECCuUPJOzQR8dftalC mI8lqB1YiulKunT1LDsi2OJKE6fr3q33VJ4gMEEA7Bh+3hxtxsjt7ubc4bwi8Lb3TqhNxyRE W9ibyfP09nsq9+3qMciw+F7n5/Rq7BWxOeBqH6iP79lihUNZfTDJQn3Rnb5caePH31HB/Kwg tEs8a0lAUwJk15mEUCkImYK0fv06mjH9Z2eaqToKAYWAHQQU4bIDjipSCCgE7g0EZImDs1ck SxycbaPqeQ8B2BIO6uaa8xxbnhC9NyvVU2YioN7TzETX+b5lD74gWyBdKikEFAKeIaAIl2f4 qdYKAYVAFkCgJKv11Cxv297L6BKOnz9s14uYURuV5z0EYCPYpm4XlzqMjA1nRwKbXGqjKvsO Auo99Y178elnX1BQUJBwWjVyxBtsEmBsx+0bs1WzUAhkDQQU4coa90nNUiGgEFAIKAQUAgoB hUCmIpA3b176dtIUoYoYHh5Ob44emanjqc4VAvcLAopw3S93Wl2nQkAhoBBQCCgEFAIKAQcI 1KhZk6N1ZaPk5CQ6ffq0g9qqWCGgEHAGAUW4nEFJ1VEIKAQUAgoBhYBCQCGgEFAIKAQUAm4g oAiXG6CpJgoBhYBCQCGgEFAIKAQUAgoBhYBCwBkEFOFyBiVVRyGgEFAIKAQUAgoBhYBCQCGg EFAIuIGAIlxugKaaKAQUAgoBhYBCQCGgEFAIKAQUAgoBZxBQhMsZlFQdhYBCQCGgEFAIKAQU AgoBhYBCQCHgBgKKcLkBmmqiEFAIKAQUAgoBhYBCQCGgEFAIKAScQUARLmdQUnUUAgoBhYBC QCGgEFAIKAQUAgoBhYAbCCjC5QZoqolCQCGgEFAIKAQUAgoBhYBCQCGgEHAGAUW4nEFJ1VEI KAQUAgoBhYBCQCGgEFAIKAQUAm4goAiXG6CpJgoBhYBCQCGgEFAIKAQUAgoBhYBCwBkEFOFy BiVVRyGgEFAIKAQUAgoBhYBCQCGgEFAIuIGAIlxugKaaKAQUAgoBhYBCQCGgEFAIKAQUAgoB ZxBQhMsZlFQdhYBCQCGgEFAIKAQUAgoBhYBCQCHgBgKKcLkBmmqiEFAIKAQUAgoBhYBCQCGg EFAIKAScQUARLmdQUnUUAgoBhYBCQCGgEFAIKAQUAgoBhYAbCCjC5QZoqolCQCGgEFAIKAQU AgoBhYBCQCGgEHAGAUW4nEFJ1VEIKAQUAlkAgUKFClFsbGwWmKmaokJAIaAQUAgoBNxDoHhI CF25fNm9xneplSJcdwl4NaxCQCGgEPAGAoGBQdSmbVtq0KAB3bhxk8a9M8Yb3ao+FAIKAYWA QkAh4JMIjBr9FhUuXJh2795F69atpfArV3xynvKkFOGS0VDHCgGFgEIgCyHQrn0HerTfY+SX 20/M+uLFCzR2zNtZ6ArUVBUCmYtAaGhJatasOV2/fp02b95EV69GZO6AqneFgEIg0xEA4apS pYoYJz09nRYtXEgLFszL9HE9GUARLk/Q84G2OXMSlSzBf5xIqWm36PKVGxY1/f2zUXBgDos8 WydJybfoamRGe/3YFy+n84+aZesiwTkof75svPNOdP5iukUh8lEup1u3iKKib1BiEh9kYgoO zE7+/tnNI4Sds5xbQEA2CiqcMbfIKPtzKl0qJ2XPZuouPuEGRcfYnn8O7rZUqPE9wz2KiblB KanmqXn9IJSfl1wGw6fzPYqNtX2d2Rmu0iUNGtqZYdr1W3TpcsYzE1g4GxUIyMBVa8rflxR+ 1fr50cq98enp8xYclIP889++yQ4mFMX3MCEh4xnwy0VUIsR57MKv3qBr1zLaGw338MO9qHuP HpQdN4bTjRvptGHDBvr1lxniPKv/adioOT8rBQ0vIz4hjnbu2GxYpjIVAjICH338CRUtWkxk HTt2jD7+6AO5WB17AYGAgALUsFEjysb/wsJO0+nTp73Qq+oiMxFw957lyJGTWrZsSfg0Shcv nie8Z5mdevXuQ507dyE//LjeTmtWr6LffvtVO/W5T0W4fO6WuDahCuVy0UPdAp1qdPlKKs2e Y2nf0aZlPqpfN8Cp9sdPJtPipQnmuvqxV6yOoYOH08zlOHjwgQCqUikfJV+7QT/8FGlR1rxJ XmrSqIBFnnaSkJjOC/U02rA50WLhqpV7+vlYn0IUUjy3uZs//o6kK+EZxKBzB3+qUS2/uXz5 qhg6dMTy2rTCACatgwcW1U7p3IUUmjsvznyuPyjFpKXPw0H6bIvz2Lh0Wrchjk6HWRJBi0pu nGRjvvDaENPiw1bz1NSbtH1nPO3el0o3b2bUCimegx7rE5yR4cRRZFQa/fZHjLlmr54FqUyp POZz+eDmTRD6NDp89Brt3e99xunp8/bko4WpaBGTJEmet9HxmnWxtPdAxjWArPV/3Hns5i+K snvvu/d4iHr16i2Gvsk3ae/evbR40QI6c+aM0XSyZN7nX/5EBQsUMpx7WNhJeu/dUYZlKtO7 CDw9YCAVKVKU4uJiadqPU73buYPeHnigK9WsVUvUmv7zTxQdHeWghWUxFpVffPkVLw5NmzxJ Scn0ytCXLCupM48RaN2mLQ0c+IzoB5KGf/6Z43Gf91sHNWvWoge6dBWXvW7tGtq5c0emQuDu PatUqTK9+ZZtLYo7SXpCQkpQ9+7dmew3oVy3d5FXrVxJs2b9lqnYudu5IlzuIucj7fSkx960 Mptwnb+YQnP+tSQa7hIu7TriE9Jp7vxolrzY3+3X6jv7qSdcW7fH05bt10RzkJIXng2mvHkz JDH2CFeNqn7UuWNh89DpN27Rd1MjCBIjo+QM4dLabd+ZQJu2JmunHn86Q7i0QS5eSqG/+X5C 6oiU2YTLNIrp77Yd8bR5m+l+yPmeHNsjXFq/9p43XyFc+fLnpw8++JgKFDBtlPjyD4yGqzuf 9gjXmTMn6f33FOFyB1dX23zy6ecUHBxMkZGRNHLE664296j+0KHDqD7bJiK9/dabdPnyJZf7 e/6FF6lRo8a8eXSLbT3W0O+zZrrch2pgHwF3F+/2e72/Srt0fZD69XtUXPRff/1JS/9bkqkA uHvPKlasRG+9Pcbm3FazlGnmHZYyPditO/Xp01fMKTU1TdgxR0SE25zj3SpQhOtuIe+lcXOx NNWemlOZ0n7UrrVpl/jYiWRasizBYmRZwvX7X5GUliaJNCxqklAXlFX99GTvFq/Mp/1ylRIT M8iRs4Rr9pxIio+/yTuRRIUL5aA6tfJShfL5xAySkm/QT79ECrVE3ZTcPtUI1/XrN3lnJDuF R6TS73+ZpH+hITmoX+9gVmu8QXnzZOc5ZSN7hOuBjv5UvWqGNAyTmvNvlJUKpTZZmXBt3hpH R45lSEICWM2xQvncLHX0p2zMjoDpn3OjrFRBtb5c/ZQJ15mwa7R6XcbzkIevNZTV3po2KUB5 cpvU1DZujqMdu1PEMDn53kDVUk45WI+y/xNFRNbJU8m0cUuiXCzuWbykWqdJuK6xxPP3vzJ2 qzE21CybNi7AKgKmsZeuiGFsjKWKFoM4eSITLneeN41wRcdcpwWLM6R2RsMnszpgasZtJVnC tXV7HB09LhUadID3TK+eq1Xr0/dRevDBB8Xp+XPnaOLECUKdUCu/Vz6rVKlBOaC3LKWhQ0fx 85GbJXl3h3D15h/1nKxKc+7cWdqy5f5QaczqhAuPT8GCJtXUuDjLDUHp0VKHHiDg7uLdgyHv uaZZhXDlzZuXypWvYIF/SbaTfOzxx0Xe3SBcGPiNEaOpevVqYg6bNm6gn36aJo596Y8iXL50 N7w8F5h29H88kAIL5+IF2S369ferFBuXQYYwnEy4pvwYbrFIdDQdPeFC/Q2bYmnnnozFpLOE 6+dfIygu3nJuMpH5+58ounDJe+p1GuE6e+4alSmdV1zq1J8jCHZqrZvnowb1A1g9MolqVjcR KXuE67lngpn05iCoXFYsn5dtarKxSp5tyZRMuFawquJBA1XFurVyU7s2JqJ85FgSLV1hSWQc 3Rtb5TLhOnw0iZattO4XdnVP9AsS1wHS+eN0S1VQuW88Y6++XExkHTqSxMTUuj+5vka4oDI6 bUYG4dLqgHT1eSRInB49nkT/Lbffn9bOmU+ZcLnzvGmEC2qPM2fbJ1z6+ciEa9XaGNp/0H0i +dlnX1JgUCC/0zfoww/fp9OnTumHu2fPJ0+ZRblz57lrhOv7H6YJm4Ft27bSD99/d8/iLF/Y vUC45OtRx95HQBEuzzHNKoTL6Err1qtPw4a9KoruFuEqVrw4jRs3kfLkyc3r2DR66cXnjKZ6 V/MU4bqr8Gfu4A3q5abWLUyLdlsEwFuEK+JqmrBv0S9GPSFcBQtko2efNtlGbdkWR1t3mCQt 3kBNI1ynTidTfiZLxYvlJs0GbeBTgSxly8X2atHUrYvJPs4W4SpcKBsNfMo0x5Vsw1arZj4q VjQ3XWJ7uT919nLavJ0hXCBGLz9XREh7IniBP8vFBb42lv7TGcKFNg93L0DlypqIqD0i7m3C hbGfeqwwO1PxExJGe2QPdV1JjgiXo+fNFwgXyMbkKd8JRxkRERE0etQIhxAUKxZCjz72rMN6 qHDixGH6b8m/5rrt28OGpr4437NnG21Yv9JcJh/Uql2f2rXrKrIOH95HK1cskovFcaPGLdhb XFt25RtE+f396VpyEsXEMvnct5NWr3JOfUYRLitY7WbAWUSXrl0pJCSUpTwBwpYpJSWFHfPE 0i62EdmwYb1V+5eHDCW/XBm2ipWrVBWLmBT25HP82FGr+hcuXqQ5f/9plQ+j+s4PPECwTSnE EqbcefJQQnw8O0WKJtioHDiw36pNX1apCi0Ras4PLVmSgoJMGzCHDh2iG/CuI6XUtFT6bspk KYcIEuCSoRl9yIV79+6htTy2M6lBw0bUrGkzCgoOYsl+AdbcSKDoqGjatGkj7dq105kunK4D G7knn3yKsOW4ke8JHFBUqFCBJannacXypby5clPY95QtW5bvXQwtWbyI7Tb3GPYP3OFMp2KF ihRcJFhoSVy4cIGdWYTRtq1bKSrKegNt0KDB4hr37NlNJUuWoho1a7DNHm8ablxP+/bto959 +giPcGlpabSV+/hvyWKLsWXCtXDBAv4eOU6dOnWmosWK8ndVDvYMeZX27tlDK1cut2inPwkK CqZubJNTgp8B3PekpESCFB9OONavX29Tkv8EY1eUMYyPj6PZf86mbqxiVr16dXFNSYmJbJ99 hTFbTGfPhumHNJ9XrVqN2rZrJ9Rn/fn7idgBCMaHKu2a1avp6NEj5rreOABm9ZmoaKlgIbZv LlNWnGKecbHW0tj58/81tNMtz89Kx46dqFixYsLu9fr1NP5ujeW6p2kxPyvJSUnaMOZPb90z dOgJ4apcuQq1a9+eHdsU5e+oQvx8RvFzf46OHD4kXL6bJ+zEwZix71D529K38ePeEZoIjppB YvfEE09S1WrVxf1eu3YtrV2z2lEzt8oV4XILNt9vBI9sA58KFgt2SBNmzIwi3W+VuAhvES4Q omZNCoo+f2NJWmS0STXRE8KFzl55sSjlzJmNTp+5RvMXx4v+vfFHI1xhZ68J5xzNmxYkkC84 6QCBSmXVypl/RNKgASYyZYtw1WFJVPvbkqhfZkVQ7Rp5qR47IYG9wHc/RlDadevZOkO40GrA kybpJOYyZepV647cyHGWcLVvk5/VOvGjQyzNibTwTikPmxmES5OCYZxvvw83fG7lOTh77Ihw oR97z5svEC64wYU7XKRDBw/S559/Ko7t/SlXriK9PeZje1XMZQcP7aOvvphoPm/arDUNHmza uTx16hh9+IFpbHOF2wfPPT+cmjRpKc7mzPmN7Q/mmav4+fnRS0NG8WZEXXOe/uD06eP0xecT KSXlmr7I4lwRLgs47J40atyEnnlmkCBLtiriGfrqqy8tFrJTvptqt42+r+PHj9NHLGmVExbM rwwbxgvA4nK2+Riq0uvXr6NfZkw35+HgzbfGUKVKlSzy7J1cu5ZCQ15+waLK6DffpsqVK1vk aSdb2C38jw4cf4CwvPTSy1Svfn2h1q211T4x9z27d9OkSd9oWR5/li5dhsZPML13CFyOAOZa unzpEr8XKazGVV7LYtX/6/TB++9aLSjLlStHzzJ5git8o4RYRV9/85VVwNjPPmepeWCgCJou jw1Jwb59e6gxP0tymsV2cKtWrjBnyYt32JS2bNWaJdF+5nLtYPv2bfT9d1O0U4vP5i1a0qOP Ps4kyfS7Y1HIJ/uZ+E2ZMomv3Vo7YMKEd6lU6dJMLJKZWJ6h6jVq6Jszhqk0ffpPtIPnoE8g +g880EVsZOnLcA7HRP+xTdXcOX8bFbuV99hjT4gNCVcaf/XVFwIHuU2fPv2YjHcRmylyvnaM 5wnPql4Twhv3TBvDXcIF3EHMc+pUx9Ev3jOQ93nz/tGGcfj53PMviBAQqAgHPwgD4Sh17dqN +vbrZ66GZ2jEiP+xl2D7v0XmBi4cKMLlAlhZqaqsjrdkWTQdO2Gw8ucL8hbh+pttlnp0LcQ/ 1Dlox64EtuVJFnB5SrheGhws+gQx+neh9wnX2fMptH5jovAgB3suzB3kC+psm7cmmSVstghX j64BvJOY4YWxYoVcjEOguPZ5C6PozFnLHVkUOEO4QGQg4YJ92d2QcMmk505KuHDdgwcEC6kj 7Ly+13m2FMC6+ccZwmXvefMFwtW2XXt6+ukBAgFnnWWULFWGXnnlTZuoFS4cKHahUUFPuPBD +MlnP7J79gJMfNPprTeHsKc46x3yzz6fxovEwmx3lsZSt5d5dzzGPN5T/V+gtm07i/P09OvC 8UFkZATvYpfkBXmIud7GjatpxnRLaYW58PbBnSJc5Xlx+1T/p8Xu/gbeWde842lkBD/kmse+ 6jVqUvPmzfl7Ki9N+vZr/ZTv2vmXX31jtl2KZ8nSyZMn2eNrvFiMYydd8+q1ZMkSCwnVe+9/ yIvlDA+uWIBrXv6w+6xPx3jnf9q0Hy2yx74zjsqVMxEEkCLEh0viXXYQggIFMjzT/syeByHR 0RKka1o75OXP728mf7C/wjMoJ1zPxAnj5Sx66eUh5l1uFGDuGolwhnA9zrvdWARqCQv4xIRE KlO2nAUZWLr0P/qLpSneSDLhQn9QywJprVq1quge1w2CCq9s1apVE3k4nzH9Z3Gs/ZFxv3Ll snDPDbJQsWJFKlWqtKgGadMnH39kIenSCBcqgBSlswFpU45dpoWc2LFjuyA6iGeGPNgwQoKg JXnxjvAU2bJlJxBxbDyWZiLk759fq0o//zSNNm7cYD7HAdTBxowZx/fbZLd9/PgJlmydZalo bpOE9DYBPbB/P3355ecWbXGiES6tAM9pGEv0gllKBiKmXQcwGTtmjMUGQxXGeMSIUeY64eHh LFE7JUhWWb7nJUqUEMQbOH7DZBXEzxvpoYceplatW5u7gm2qRjZBdCFRlRMIyHdMOGVPtE1Z AgunMEgoR4y5S5cu8/NeUNxv7b2FlHDcuLFyd+TpPZM7c4dw4fl67rnnBbZ4ZvbvP8DSxKvi Xa1Tp55Q3cYY8+fPo/nz/pWHs3ncvTt77+3dW5QvmD/fKbI28JlnqXXrNhZ9Thg/zq401KKy CyeKcLkAVlapKnuTM/IcKF+HTLgW/hdN1zkOlFFKSLSOLSXbcP3FNlZVK+em2jX9CZ7efvrF 9MPs64RLw+fZp4NYFJ9hoA91wquR6WZ1QSPCBWnRi4NMhFBzmZ+XPZ6/OLiYgHD33gRat9FE PGVMnSFcTRvlMUsMnbGNkvu3d+yMhAtx3fr2MqnxxMWn08+/Wi+ytDFAkLxpw9WK7ecasv0c EiSOC5ZY/uho47rz6S3CBUxWrbFW99DmhJhtsAWUk7dsuLp170G9Of4I0uzZf9DyZUvlYVw+ rsFSpyFDRvKPW26xwJg5cyqtX5exc40OX3jxdfby1lz0PXfuLFYnstxxrFuvMcGZBdKRIwfo 88/Gi2Ptj+ZtEAuCqVO/5B3mjF1HqBm+8ML/RNW4+Fh6ffggrZnh550iXE8+9TR16NBBzOH6 9XS+rsO8CF5JAwY8wyqRhWnVqlUUzwSgSdOmYkGGiliQIei0O570DC/Wg8w6derSq68NFz1c uXyZ3nprtEVvLVu2EpIQZIJQ6EmLXNlVGy7ZbXRiYhK9O3G8RbBhENn2HLAb6eCBA/TFF5/J w1kce8NLoexVzRHhgnrRV19PEmQUNpLTmdBsZhVCLXVmKchjj5mcAyQnX6OhQ0yLXa3c3U+Z cO3etUtIJEASgT02PRD24ZuvvxQqciBHIMuHDx+hzz79yDxk+/YdeZOgvzg/cuQIfc3SEFka BCIKb41Is//g7w5WVdSSRrhkT5QTJr7Hi/ZSvNkQTW+8bnqWxo2fINTecF+HvfKy1txi8Y5M WboAieFDPXtSDw5lgQTiD+mcnEAaQB6QIEn6m730aQk4vMGECMQH3yF4liGpk5NMuI4dO85Y fWGWUEBFcsTI0WYy8803X7N6425z80dZ0vQAq74iGdlmPsML8la3F+RQR82sOIfu2HD9739v mMMm6DfggoOL0PjxEynfbRL7wfvvMfYnzNctEy5kunrPzB3xgTuE64MPPqLiISFMfm/Q5MmT LO4JvkP+9/oIISV1VnUe84FUH9JppJUsgXXGIykI9/Dhb5gJ3okTJ1iT4z3Rh7f/KMLlbUTv cn9YUD/et5CwI8KX08zZUYQFoK0kEy5bdZAPF+F//WO5yJQJFyRcPBz1u71Q15xc+Drh0q6r bav8VK+OSZUBDka+mxbBu/rZ6enbHviMCFfRIjnoyUeDBWxy3KX+jxfmnTU/m5IpmXDtZIna iVOpZugRjBleCjWvh9gh/OPvKIrgQLjeSDLhgnRvs+RVMHfubGw/kUs4DMnJnhmR1qzneFJ2 YmK5S7jS028RXPFrCV4KS4b6CVs6Le8P9pp5JcI7140+vUW4tPnZ+jRyaS8TLkjuEODaVjp5 6hqrtloTddSXCdcff/zO9h3LbHXjMB/SpddHTGCnOiZyvWzZAl7o/GLVDmQLpAvp2LFD9Okn GTvbyHt20Css4WmLQ/pz9gxasWKhONb+tO/wIIdYyCukK3oyhzoffDSZ7S+Ki+qjRr1EUSz9 spXuFOEawDGFmjdvaZYCYT74PoXnUFsJtjUIuikv5mzVzez8Fi1a0qDBz4lh1q9bSzN0qnso qF+/gfACmcbuNPft22tzSq4SLiyQW7RoBRMYusi2Q3pbo9DQkvTue++L8bBwfvNNE1k3msCd JlwNGjSkIUNfEVOBVEdvH4YCbaGI4w8/eF/YK+HYkyQTLtjcaKprH3/yGcdAK0KyNO3Djz4W qpp64vLss4OEKh/m8d57E61UyAIDg+jjTz5hiV9OIcWSVfs0wgWi9uknJhIHaWNDtmMDgfn4 I9P9epEXs1AvTGMJzIuSUwJ58X6Ybe0+++wTKzi0MfCevP6/1yzKNXIH9bcRb7xuIYFCxTZt 2hLeSaQ/fp/F3zHLxbH2RyZcH3/8IR07elQrEp/ateBE73JdJlQy6dA6gP1e1dtSxVieO+zT MiO5Q7hAoIsWKya+m0C4UlNTLKYmk2x7aqDu3DN5IFcJF0KbfPPNJCFVtCW1HMzfX1Azxffu m6NHkTNu3vG84l4jrVzBhOv3mfI0bR7j3YDdJDbR+RFL4AAAQABJREFUtm7dYrOepwWKcHmK oI+1r1XDjzq2KyxmtXd/Ii+YrY0l5Sl7k3BduJjONk9BTFRy0oFDibRyTZLTgY+NvMZhnvZU vOTrcPVYs+HSYpPJJEhTX5QXyUaEqyE7JWl12ymJbLfWvjXbP9U2kbfvpoWz7rjl7OSxLEus z/ReH61ruJYjEy5HLZ2xm3OXcNkb+1rKDVqzLs6mGqy9tvbKfIVw2ZsjyuxJNL1FuGBXNXLU u1S2bEUxnT17dtDkSRm75fo5fvYFqwwWNFYZ/PiT79nAvQjvpqdynKYXWRUmg0jr+zE6lyVo H7w/mtV5MnZh9fXvFOHCuDDgh6pJnTp1CM4bNPUceU7Q9z/OCzDYhfiSm3hZygT1KkgMQHxk iYd8HfaOXSVc9vrSyj797AvhFAEL7P8NN9kIamXy550mXD169KRHevUSU5g7dw4HE7fcPEAB FpdQjUSCNOrs2TBx7Mkfh4TrP1Zf/Gu2GMIW4Ro1+m12bFHZroc2zcMp7MLefvtN85Q1MmRM uI4x4fpA1HWGcNmSLLw9Ziw7AqkoJBrPDX7WPDYOJk/5gTdl8jCZMZYuQEo18V2T1AHv2Y9T f7BorxEuSKNfeN5aSt62bTt6esBA0WbZsmW8MfS7uf3DD/cSEjhkYPw5f/+VaaTKPKjBgTuE y6Abi6yOHTvTE08+KfLm/fsvLVgwz1wuk2R37pm5Iz5wlXDVrl2HXhtu0mxYvnw5S1xnyd2J Yzm21m+//kJrnHBk4S7hsho8kzIU4cokYO9Gt6zuLBxlIGAvdtGnz4x06OZdJlwgDSmpxjvv 7CSJ+7Qs00u4QLhaNstHjRoEcD83aerPV6lzB39WNcxPyTyfH3T2OJ4ugD3B2Ey4wlNp9t+x vNNC1KxxPt7BZhWbs2nCBT3coz/1mEmCZUS4HulRgMqWySuwlm2NKrEdV/fbdlyLWE3zxKnr FlN1RLggYQtnr48bNiawt0PvSXgwCUeEC7tJsXHptGNnIh06am2cbHEhfOIJ4YIzECT2os+S BL4BnODl8p/5sfy8WD5rotDDP54+b5oNF/D5+59om7NJu36LF7aWxTJ5v3Q5lVWsLJ8Jufbl 8Os24495i3A9z2p8jVmdD+ncuTDe1R7Lz7GxVA11Bj/3Gqv8sNSC059/shRruWkhCpXE4cPH iny9/ZfIvP2nRcv2VLduYyYupVl1t6BcxCpTucxkxpcIlzxJxHGCWhLUmrTkim2B1uZOfsqS GIwL1R3YQcXEsLo02/EcOXyYjco3W0kT9HN0l3D17PkIVapcmW3GQoV9m9yvn18uIS30NcL1 UM+H6eGHHxFThbRyDdtS3YnkDcL1zrjxvIFSTti5nT59xnDasKeC22zYyowc8Ya5jjcJ16KF C+mff+aY+9YORo56U9ik4Tdm0LMDtWzx+eO0n4TkLSE+gWNOWqoLogJ+tzRnKruY5E7WOSzR CBc2QIYOfcmib5zU5k0TeIFE2rBhAy1auEAc4w/I3Nh3xltIs+GUJDY2WnjzvHTpopAAe8t2 yzyw7sBdwgWVuNbspAS2asHBRcV7pXUN2zXNVtMe4XLnnmlj4NNVwtWkSVPWmjDdp3D2IAmP mPoEez58dyDBVhJSXkdJES5HCDlZHswuP5Ei2ShQJWMEZMkKXJQfOKxb9Rk0kwmXPecIBk3J iHDJC8uFS6LZoURuqlbF9wmX0fXZI1wgGppTi8ioNNqyPdHcRb482ajDbSnjvgOJHFzYUsoo Ey6o1Z0+k3GfQEIQj4x/kzIlyYQLgY+3bMuYWzoTvbi4m5TuAsdzl3DJcbhgnz94gMkFPjYK pnGQa7YR93ryFuHShz5wZqLye+GJ1FImXO7acHXv0ZcXlY+JacfwouKLz8az3dFFu5dRr35j tvUyqX4dOsyG659PEPWfHvASS4E6iuPfZ01jOyfrH8UeD/Vj+42+ZqN0ewP5KuEayOpM2BFG gu1Ovnx5hSThWzaiP8zui30xwXbpkV69zU4WjOYI+60pkyeLBbhROfJcJVzCyx/bC9VnL3+O kiJcJoS8SbgcYY5yXyVczszdHcLlqN/mzVsIV/Ih0oaKvo2RZE1fx5NzdwgXiM7gQc+Z7bTs je+rhMvenLUyZwmXhQ2XCyqF2jiZ/akkXJmN8B3qHwu6px4LErsb4RGpbPcT69Si3duEC5er xVGCI4k0tlVB8GBfl3AZ3SZ7hCs0JAf1622Sfhm11fJiYq7TjFmW0hCZcNkKfKy19/anTLhs BT52ZUxvEC6MJz+HjuzGXJmfXPdeIFyyagwcN8ya+at8iQ6PG7I9Fty8wxAf+v5TpnzK7uVt 2+/IHX7y2VRh74V2I0e8IGKWfPAh218VLS7cuY9443krKVm1arXo9TfGi26us+czONXYs2cb JUkeuDp07MaqUCY3zr5IuNqxZ8j+tz1DXuSYU/+wqtnQV4aJ71qo673P9jIgDr6a6tatJ9xk B7OKJFx/B/Kn7DUONgtTf/je5vRdJVy9evURcaDQIZwr7Nu7m2NuHbDwMAg8ITVUhMsEuzcJ FySZa9essXk/URAVHcWhG5aY6/iKhAsOOuBy317SVHjlOo4kXHJde8d410uXKSPUiQMDCwtV adm9/czffhPOc+z14W6ZO4Tr628mm52BnDp1klVcdxMkRlqqXr0Gtb/t/MdXCRc8Qp6xIZHV rgNeLZ1R3e3Ojll68SYTki9qICjCpd3RLP7Z95GC7HQgj7iKP/5mZwPhzokp5IWuNyRcmECj +nmoZfOCLCm5xfYNycIBhDuEi735irhIMFSHm/b/lmdIkTy9XXqVQqP+7BGuZo3zUNPGJtUo OICAmoScsrOeXI4crAfB6cfpERzEN6NcES4OgMqx4abNyPB+6O+fjQY9XYSlINmEl8vpv0Wx 1zcZUc+PHREuR8+bplJ4NyVcFnG42Dj9cwPjdFtIlS5Tjob/bxwF+AeI53XWrB95Yea80w3Z OQbaXrxwTtiBYbz9+3ezZzCTYb08fp++/alLl4dF1ubNa9kl9LdysTiWY3j5GuGCG+633h4r 3FXjHZ886VsRjHPoK6+aJTiaVzmrC/PhjA4dOnIw7McF8YYa16uvmgzNjabsKuHSVMfQF9yW w325Pmnqjr5MuIycM+ivw1vn3iBcWtBXvQdBZ+boTcKFAMNz5vxlNSziB+L7y0il8IepPwnV N73nRatObGR4i3Dpu0cA5F7sFRYbXUjOxj7U9+PMuauEq0bNmvQ6e/JDusDOad4Z+7bVMLLn SnuEy517Jg/mqkqhrPq3eBE7iZnrnfhmsrdL2Pn5kl0t8FKES35qsuhxlUq52DlFoJi9PYN7 o8vLDMIVEJCNVcRMKqBJSTdETCV3CFeJ4jno0T4mKdLqdbG070Cq0SW4lecp4erXqyB79MvD EjwOSvzjVStpomzHtXRFjIVNjiJc1oQLN1GOHafHzK2brGvkiHA5et58gXDlzp2HDcy/E+p5 iLkyaqTpB1d3qVan/v4FaOTod6lESElRtmLFIjYcn25Vz15Grdr1eWFu+lHfu28XRYRfos6d e4gmv/76vZU7eRQMGTqa6tVrJOr88MMXFi7hRSb/GTFyossSLtidTZzwutZFpn3CbkuLewT3 4Fq8KTjUwAIXUhqk6T//xLYh6x3OAzY2SOmsM3vhwnmH9d2tgHFC2OUyErzZ4VnRJ83mBwvg oUNeYunkNX0Vce4q4YJb9QIFAjgmWzq9/NILhjZikyZ9J9SgfI1wye7ybTkSePW1/1GtWrUE NvBiuGvXTkPcXMn0BuGSPfHBCyC8ATqbvEm4bElM3+f4blDZg0qu3p3+x598yt4Yi4qAzPoQ Bs5cgyeEq2bNWiwl4k0oHmgrO+TQJ3znfvPtZEEIEU8OoR8yI7lKuGRnH4jbNpNtDvWpT99H 6cEHHxTZ9giXO/dMHksmXOvYK6o+oLlcF8eIu/bhhx+LbCNX/Pr6zp7LcegQJw7x4pxJCPVR sGAhURUxC7W4i860daWOIlyuoOWDdXPlIhrwZBDvWucUi384ykjWxQCyN+3MIFwYry8TkpJM SLTkKuGCXU/vnib39ujjV3boERXtPZGHJ4SLtbHYfquokGBpHg2169Q+8+XNRi8MMpFOPQlW hMuYcAUHZqf+t93wwy7utz+cXzBouNv7tEe4nHnefIFw4fo0D29QHfr0k485wOgxe5ctyl59 bQwvEuuJ431Mlr79xuR1zGFDXYWP2CNhMHskTGBPhFcjrnCA2cpCjRDqhCkp1gt2WXplFNi4 YiXEQBnL8VZM3xWOJFyffPoDq8UFM2G5zl7Whtl1Ia+bulunHTp2ol6P9BbXO3HiBErm4L1a gt0HXK/DDuqXGTMc/rjL8aAQs+u1V19hlTvvSe21eeFTdv5gtJiCm/6PP/lcqBZiLkNefkmo mMp9aMcIhAxnITdupNPbb73l0D3z+xxfRyN7RkFuO3V+gB5//AnRvSPChcCozRhnJHedWMi4 O4rDBYnm+x98KMYDYZk4YZxwNCIy+A8cLIwbP144eMD7N/y1YV65h94gXH369KMHu3UTU4Wz D+AlJwRNf+zRx4UHikOHDvJ3wFfmYm8SrgQOEj1+3BgLwle5chXeWBkpcINa7tgxb5nHxsHI kexQo1pVkQf1Vjyzcnp20GB28tNUZC1atMDC6QUyPSFcw4e/TrVq1xZ9Gz1jtWrVZs0A0+bO +fMcQPidsaKut//IQe2N3ln9eO04ll1/jmmHZDQvuF5/m6Xz2rtoj3C5c8/k+SCo9oSJpthq tqRtcn0cf8ubLnCMAUcnEyeOt/hewe/B6NFvMkEPRTwOEWZAjiGm7wvneHfh/AROYVJSUnmz 53mjaoZ5ckiFzJRiKsJlCH/WyazNbuA1Bw2X2ePe8ePWix75avaylEhW1ZIJ18YtcXSD1eNs pZjYG3TmbIY3AyOnGVpb2T098hwRro2b47jOTf5CJipcKCd7NszHhul8wgnxov6ZbxkDTBR4 8McTwlW2dE565KEgMTrmvWO3zu/77Xk9/UQgBQXmsggEjSJFuIwJF7DRPD/ieN6iKDoTlvG8 Ic+TJBMud543jXAlstR21+4Eu1M5dyHdIv6dt5xmYNDevftyPK7uYnzsuL7LRMCeu+/WbTrR 00+/KOpDmrF27TLhsU5k6P5cv57GMYBm6nIzTgcMfJlateqQkcFHe/fupEnfmhapFgV80vmB h6hfvwEiG4Rs584trH64ixLi46ha9drUpm1n9lpo2llEJUeEa/jr46gGt0OKirrKDiv2WxAF LIKNYomJBm7+wWIiNzNyox98qMbs3LnDqZ47depMjz/xpKiLmDKjR410qp07lWS3y/C4tnPH NsbqsLDdAQFBueb17fz587yIHGNzmGHDXmMvZCayjnljQZLOOGvp7NmzFsGBZUkLbNwQz2rf vr2Ui71RNmzYkAlURnwzR4SrWzcO9N2njxgKqnL79+3hoOLJ2tCE3WjZdTsIUavWrc3lOID0 QguqCzuQ48ePW5Tv3bNHBLbWMqFCWrFiRXGKoKvr1q6lmNgYIemsUaOmsINDoS0X5lo/rnx6 g3BBajBmzDixiAWJ3s6hCnbu2MGSmVx8PZU4rlwLysvOXpDmzmGX94sXmqfoTcKFTi9zsO1l HJQ9lWOi1GTVt1r8vBUoUECMB/fecPMtp6bNmhPINcwHsFhevWolx/86SkHBwVSZPV3Cqx3K 8H5/+OH7VjHGPCFc/R59jNWeu4rpgGTv2rlTOMLBWNWqVad69euJuGeosJGl2D///JM8da8d lylTlsn8BNEfJOAICn6VvUnKad6//5gl0fhegpRaC1exm23f9u/fRxeYFJbmvhBcvGRJk0YD +rBHuFDu6j1DGznJ9mTn+DsB78fNWzfNVRBUW44bCbII0oiE74nlHFMSHiHxLtSuXVeEONDK 8F2JDR97SVNZRR1oG0DrwNn05ltjzN+H+rABzvbhTD1FuJxByYfr1K+Tm9q0yliwOJrqt9+H W3iAkwmXo7ZwgrF4acZC0x7hysMb1s8/Y5ICoV9HhMvW2IgFtWhpPL9stmq4l+8J4WrdPJ8I DoyR7dnLtW/D8bhq+YsJTv8tgt2tm8isIly2CVfJ0JzU9xETmdWCUrt3h61byYTLutSUY+95 0wiXrbZyvhwIG/neJFyQTnzA6hiaOpvRbrY8F5n0yPlGx3AN/8rQ/kZFIq86k53/MemR0/Tp k2nTxtVylsXxmLGfUNmyFSzytBP8iIaFneL4PFVEliPCVaFiFbZbGEd+frm1Liw+QRhfepF3 8X0wIXArArgi3Qm7r9dY9Q3usO0lLMwhhdq8eZPNaojp9fobIxlzVqcwSHqVoOKsyvj22++I hb9BdSH5wH0qWrSYQ6cZeNaxCEVdo6QPnIxgznBo4kr6m+Mu/bdksbkJFrKwQ8Puu60E8ofY VNjw8EbyBuHCPDo/0IU3OB616xEUC2HYfsqbNN4kXFhYBzNRMkoIS/DO2DEiCLq+HG7CQazs JVvBbD0hXAjU/dbbY3jORewNzXNOpE84qLK37rnRYEOGDqMGDRoYFYk8vaoonM/A0YetdPTI UbPk0B7hcveeyePi2XuM7UJtJTjHeO/dieZivNtjxrwj1EzNmboDqCX/8st0iw0dXRVx2qNH Rvw8EHZsIBmpURu1Rd4XX35NeA6QYKfrDTVh0ZnujyJcOkCy2mndWrmpXRvnCBd2t7/9PsKC vLhCuPSOK2TC9eecSKuYUQ89GEAVypt+tPROEoCz0QIYc4yKvs6xONL4vykekSyR89b98YRw afZb16+b7LdszU+2rZNtku4lwsWbjjTspaLC2YUW7NrePerVsyCVKWWbcKHt430LUfFipgX1 zNmRvMvnHbbt6fPmCuFauYbDMhxKM0MRWDgbq/6aVEw9cQuvdSgHhcSiGV7gEFsGnqr0yRXC lcDeA4e/OlDfhcX5Bx+xZ8IixUVeYlIijXzjOYvFm0VlPgni2DB9+vTnhUQTfk5MUmvs4F66 dIG2bVtPxYuHmqVmE9gu6/y5MH0XFueVK1ennuzWPqREKQ6ybto11ypAijZ0yFPaqU99ys4k /pk7l6AalZkpgLGBamGzps2s3Ebje/YCS7aWMNEAYXKUYOeCvkqwig9c4ssJZG3aj1PlLJZK VKG+/fqJQLdawbVrKax2eY694y2mRx7pJbzBwSvdG68P16oYfkJy05dtUSpUqCCkJJB0aAk7 4mPefks7FQQTRNOVNPuPP3h3falFE5BGjAlbLXj01BKkHvv37xeeKr258HZEuBZxAGZ4x0Sy FfhYm2M9dhUOqSBUrGSs4BwFTgTmz//XLCXR2tgjXJCMfvapyd7GmcDHiOnkH+AvJFsaicHz durUKWHbYw+3rl270QNdupilYdr8EKh5NUvGVq1coWVZfHpCuNAR8MfzXZtVC+X7jTLcc2Cw YP48w+9X1PFWgiod7h3uIQiAJr1C/8DwtVeHWZBVhGBA3Lj27AQHgaO1epBEI4g17DcHs9oz kl6qKQc+9uSeic5v/4ENZKfOndker5hQ7ZPLjCTCUHvs17cfNWnanLUI/MzVca3Hjh3j2FtL WKq9z5yvP4BEu3uPHuzAqIH5vi3nwNazpcDW+jb688DAIPrs8y9ENgjesFeGWGhN6Ot7cq4I lyfoqbZ3DYHWLfLxDmR2p8dP4UC6azZk2F843dDHKoawI5G6tS0XPI6meOBgigjk7KieL5fj u7h9W5O00Nl5XryYRvsl0uNsu6xS76GHHuZFQk/zbjYWBpvYsQM8w/liyp/fn8qVr8Q/rHno 2NFDbPsS74vTzLQ5aYtaDPD+e+9m+uJNvhAsvkuWKiWykthuDMbkmWU/Jo+LxUy5cuV4AZMq FoCO1ILktr5w7Ofnx9LZcgSj+ti4WAo7E2ZzMQZ3+FDdczaxb1uCJ8TMcp6CBXu5cuXFoh2B rmFbc6fxBx5QJQwLC3PJEQEIb8nQkmz+cJMuMqmGJPNOJBCY0qVLCbfwIKvYEIB9lCwNlOcB AlogwOQ4R863dZyUnGQVtNlWXVfyMW+8Zwj7cJbfbU/wcveeuTJfo7rleUOlCEsZk9hOFu8E 1I3tJTgEgZq2FtgZdVesWC7eKXvt9GVyEGZ8L8LZRmYlRbgyC1nVb6YiMOBJjidT2FjFxWhg BBSeMtVSH9qonq/nyVIzZ+e6bkMs7d6X6mx1n6yXLx87IXnWJCFydoKnTifTgiUZKrDOtstK 9eCuuB8bwsNQGAm7x5nlRSsr4eJrc4X6J9RWsIhzx223r12Pmo81AsNeHU5169a1LrCTM+nb b0SYATtVVJEPIyBvojgzzbTUNHrxRZPEyZn6qo5tBGSbLUimILldsniR7QY2Snr3YZvobt1F 6SaO9/UTq1hnVlKEK7OQVf1mKgLNGud1ScLFGky09h6QcBUrmoNq1TCpDjgL8PETqQQnDlk5 8UYztW6R36VLuBqZ7tVQAi4NfgcrYzHfpk07atCwAS/osxvGY7mD01FDGSDQgJ1rDBkyVJQc PXpU2IIYVFNZWRgB2JFgl96VZEsN2JU+VN27h8Ag9p7or1Nrtjcb2C5OmTzJXhVV5iQCb4wY zRK9QmxvtUs4tonUORhxshu2+cyIqWjkpdLZfpyppwiXMyipOgoBhYBCIAsgAPIFw3SVfAuB nmxn0ZNtRJCWL19Os/+Y5VsTVLNRCCgEFAJZCAEEpfaGWvSEie9RKVa3ht3Ym6NHWbin9zYc inB5G1HVn0JAIaAQUAgoBCQE4DygODt/QIL75aioSKlUHSoEFAIKAYXA3UCgQoWK7HAkr7AX PHz4UKZOQRGuTIVXda4QUAgoBBQCCgGFgEJAIaAQUAjczwgownU/33117QoBhYBCQCGgEFAI KAQUAgoBhUCmIqAIV6bCqzpXCCgEFAIKAYWAQkAhoBBQCCgE7mcEFOG6n+++unaFgEJAIaAQ UAgoBBQCCgGFgEIgUxFQhCtT4VWdKwQUAgoBhYBCQCGgEFAIKAQUAvczAopw3c93X127QkAh oBBQCCgEFAIKAYWAQkAhkKkIKMKVqfCqzhUCCgGFgEJAIaAQUAgoBBQCCoH7GQFFuO7nu6+u XSGgEFAIKAQUAgoBhYBCQCGgEMhUBBThylR4VecKAYWAQkAhoBBQCCgEFAIKAYXA/YyATxKu PAF+VLFlOQosVUjcm+jzsRR1OIGuJ6dT5NWI+/l+qWtXCCgEFAIKAYWAQkAhoBBQCCgEshAC Pke4QLaaPFWfcuXJaQHjjdSbdHRxGF0+e8kiX50oBBQCCgGFgEJAIaAQUAgoBBQCCgFfRcDn CFfNrlWoeNUihnjFhCXQrn/3GZapTIWAQkAhoBBQCCgEFAIKAYWAQkAh4GsI+Bzhav1cY/Lz 9zPE6fq1G7Tu+y2GZSpTIaAQUAgoBBQCCgGFgEJAIaAQUAj4GgI+R7g6Dm9pF6OVX260W64K FQIKAYWAQkAhoBBQCCgEFAIKAYWAryCgCJev3Ak1D4WAQkAhoBBQCCgEFAIKAYWAQuCeQ0AR rnvulqoLUggoBBQCCgGFgEJAIaAQUAgoBHwFAUW4fOVOqHkoBBQCCgGFgEJAIaAQUAgoBBQC 9xwCinDdc7dUXZBCQCGgEFAIKAQUAgoBhYBCQCHgKwgowuUrd0LNQyFwHyKQI0cOKh5SgvLm zUeXLl6g5OSk+xAFdcn3CwLBRYpSUFAwRYRfoZiY6PvlstV1KgQUAgqB+x4BRbiy+COQP78/ NW7SkrLxv7PnTtOpk8esrqhZszZiQZuSeo02b1prVX63MsqWrUDly1cWw+/evY1iY51fgLRt 14WyZ8vm0tS3bdtASUmJLrWxVbl2nQYUHFSU0q6n0cYNq2xVs8pv2Kg5FQgoaJWPjPiEONq5 Y7Nh2b2aWaduPapQ0fQMpKRco/8WL6Jbt27eq5fr8nXlyuVHQcHBNttFRUbSdX4G70bKmy8f +fsHEEiznKIir/KcrstZ6pgRKBFakpo2a2HGYuXypRQfH2c+VwfeQQCkNmfOnHTtWjLFxcY6 3WnhwEDKnTuPYf3U1BSKiXb+98mwE5WpEFAI3NcIKMKVxW9/s+ZtadCgV8RVLF06n+b8/avV FX3w0RQqWqQYRUVH0qgRL1iV362MZwcNo+bN24jhP/30HTp29JDTU/lh6l9WCz1Hjd8Z+ypd unTBUTWnyidM/IpCQ0tRQmI8DX/1GafaoNLnX/5EBQsUMqwfFnaS3nt3lGHZvZrZpm17JhQZ gc6XL/uPEhPiM/1yS/C9Cw0NFePs2b2T0tPTM31MdwYoU7YcNWjY2GbTtWtWUXRUpM3yzCjA Jk/9hg2pCH+nGKVVK5fzQjfGqCjL5gUUKEhVq1YT8z958rhbi+/qNWpR1WrVzRjs2b2Lzpw+ aT6/Fw+8gZsruGTjTbhHevcTTc6fO0s7tm91unmXrt0pX/78hvXDwy/Tpg3rDctUpkJAIaAQ cAYBRbicQcmH69yvhOv7H2bzLmYul+6MrxOuM2dO0vvv3V+EK7RkaarfoIG4l1Ap3Lb1zkj4 6tarT+UrVBLPz6IF8ygtLdWlZ+lOVXZIuFavpOjoqDs1HTFOh46dqWChwjbHvBcJV2jJUtSk aXNxzXhGL144b/P6bRVAGtiiVRvKz4t6SLY2rFtDqam++dzZugZX872BmytjZhrhusKEa6Mi XK7cC1VXIaAQsERAES5LPLLc2f1KuCpUrGKl/jHwmSEUWDiIEhMTaOrUL63u5ckTR3hh7R31 K3clXFWq1KAcrO4ip6FDR5GfX266HwkXcMiePbv4fyelTFmFcOXKlYvy5MkrPy5UukxZqnJb 2rL2DhOuggULUYdOD4j5JMTH08GDB6wkkklsh3fzxg2LOWf1E28SBz8/P699D/k6rt7EzZlr 9YRw5ff3ZzX17BbDtOvQUWwGhSvCZYGLOlEIKARcR0ARLtcx86kW9yvhMroJE9/7mkqElKS4 +Fh6ffggoypey3OXcBlNYPKUWYI83q+EywiTzM7LKoTLCIeKlapQ7Tp1RdGdJlyyHdK+vbvZ ZvSE0RTvubw7TRzuFQDvNG6eEC4jzHv0fIRgR6kIlxE6Kk8hoBBwBQFFuFxBywfreotwla9Q mTp06EbFihWnALYxgiE+7DBAAv5b8o9dZxPFioXQA116UvHioVSA22ZnI/rUFDYyZicYe3Zt oQ02nErobbgKFQqkmjVNql430m/Q1avhtGbNf3TwwB6nkHeHcMG4ulPnHlSjRl0qwLv3kCYk sLpPNNu7rV+3nA7YGFsjXHB0MfbtYdT1wUeoevXa5M8OMRI579Kli7Ro4V905colh3N3l3Bh 7t269xGOR4KDi7KziVt08eJ5gi3Y9u0bKSoywuHYrlTADnDVqiYblJiYGDp9ynixDYlVnbr1 hdQqnqUgJ44fNQ9TpGgxKl26jPlcPohlA/dTbB9jL1WqXJWfsQJsEH+Njh45RGXLVRC2WPBy CKcbcXGxdOzYUUrhcjlBfbBw4Qw1uMDAIH7OC4gqsPW4edPSUQecPuzfl/HcwTFE3XoNRP1L ly7RZQNbwOIhoWa7sEOHDljNQZtPyVKlqUSJUGEv4seLueRrSfzMJDKeJ51youArhGv7ti10 4fw57bIMPz3FDfeoMt9zJJA7SEFDGLuQkBCxEIZq3nmew5XL9t8zfCeVL1+RAtkxQkBAABHb +iQmJFBUVBSdZjsqvUSuKH8PluL7pKV87CAEzy7S1Yhw9qaZrBWZPw8fOigcNWgZeCar16ip nVp8pqdfp317M54vi0LdCeyKypYtL557zAPPfgLbOZ47e9bm8+It3HRTcXjqDdy0QfD9Vo7v WTA7jcmXLz9ly56NkpOS2LmS6XvCSB1TJlznzobxO7yXKlWuIvrwy51b3POrVyPEs4TvS0fJ XcIFdfcKFU3fOf78vMHpRlRkFD9vkYK8ORoX5U2bNqOOnTrx91YgnThxnO2z/6ZIdkijkkJA IZA1EVCEK2veN/OsvUG4evfpT52ZdOi9jWmDgDh9N+VTXhBaL4YbNW5BAwa8ZKX2pLXF56FD ++jbbz6wckwgE669e3dS3boN5Wbi+MaNdFqw4G9avGiOVZk+w1XCBccJQ4aMYpIZou9KnOMH GWTx11++syrXCFdsXAwdOXyAmjVrbVUnnhdF03/6xiZp0xq4Q7jKlatIA58ZKhx3aP3In1fC L9Hkbz+iy5cvytkeHWPR2r1HT6FiA5unxQvnC5Kn7xRu3pu3aCWyQcr27tltrgKPhPBMaJSi efG7ds1KoyJzXus27QheyEDoI3jhW8qAvEFtdDPbW8i2Tc2atxQLdXNHDg5wfbDt0hJ2ubH4 QoKjAzg80Keq1WqYF9hGHuhy84KvRcs2VEgifnIfeN6OHD4kiKScrz/OSoTLU9ywgG/Jdk9I IDSVq1Tl589SJRdlIGOQuBklkOtGjZsSNgyMEkIRbN2ymWIlN+0yxkZtjPJWrlhG8Uz4tYQN nI6dTOqXWp78Oe+fv62IvlyOYyzaa9aqzd/N1teMTYJjR4/wM3NQ34y8gZtVp05keAM3DIN7 1oy/Q/DOGCVsiIDwQ/IkJ5lwnQ07wxtgAcINv1wHx/CkuXHDOrrhQPXVHcKF76dGjZoQvHga Jcxr964dht+dcv1PPv1cEEUtb9myZfTn7N+1U/WpEFAIZDEEFOHKYjdMP11PCVeTpq3ouede E91iwQep0iVepBcuVIh3eMuylMLk8vn8+TCaMP51/fD0+RfsdY8XFkhQ5cMCO4ElPPDgV7p0 ed6FNjm2WLp0Hu/Q/WbRXiZcKEhkl+1HjxwQrtYrVqwqPCsiH7uDH374Fu+mn8WpzeQq4Roz 9mPeOa4o+oML4UuXzrMkL4nK8G6y7ElwxowpVq7fNcKFxjdv3qBYXmiFnTnFP5BFqSQ7goCU B8kWbqLw9h93CJc8d0jRjh8/LNyply9fhe+bSYJ0NTKcPvt0vFclXVi4aiQHCxbEE9IneNWD swek9WtXW+zKlipd1uztTWsnbCcYL1cIl9YWEo5I3rHGwgpe87DgQkKMozWrVmjVhMSt6G0J BTJz58nDdnN+ohyhAm7esJRw4XnA9WnJU+KAflq0am0m92nsLAGEMIWJI+Yle0fbsH6tkKJo Y+s/5UVtZqsUQoWwJDuM0FLevHnNXiXhHdFI0gPio0kfPMVNJg6aFBISSYwLaVWx4hmbJZv4 foXrnkd8/3To1IUlJKbF7zVuBwmHdh3ae4pnYDV7V9Tc2Qs7uSomr4S49py5corQGjiG9D/l WgoOzekW3RJe7PDcaAnPZLNmLbVT8ZmH8dO+Ex0RLnjvhBdPLYEQJrBUDtcie/Y0cuLhKW7a mK5+egM3EOouD3YXdq0YH/cG3w14t4sVLy4km8jHM7Zy+X/mZw15MuGC1BKbRJAKJSUmio0O 7bcKdbG5YURWUaYlVwkXvlM6du7KG5Am9/JwBAQpKu45JKYa6Qfp2rXz/+xdeZwURZqNXVcd FQS5flwqcgiIDXSDHKJAc4iINKAOo4Lu6K6jIKeAIoiKyqGzioPH4LHrPY46ig020CCH3Mgp IHQjYHMjh4jouq6I870ooojMyjqyqqCrmvf9UZkZGRkZ+SKrKl581+fmNiHb0qXPl//WCY7F hTWrV6uJE58NqcsCIkAE0gMBEq70GKewvbQJ13LJ4bRkybyQur1vu1sHk/AKCz9o8Cgx42us r5kzZ7r62zuvBq+vIBPYUQ//WZ0n5hyQ8eNHqs1fnTAPayQaqf79H9Tn9uzdpU3r9MHxj1ZX tVN3SCALyLZtW9Tjj91//ExgYxOuwzJxflpCw5uw7TDHGXzfqGCervz8KeqD999wXO8+8EO4 6tSprx4Y/oRuAkE2xo4ZLhqTE+ShV+8/qezswOr0+vVr1LMTHnfcziZcW7duUhP/Mk6CdQTC mSPy3r39hgcJ44svPKWQZyyc+CVc7dp1Vrf2+k/dXEHBern3GIcT/j19hqmmTVvo8++997qa NXNquFv7Loc5F7RFEC9NDyY8Xa7vpmC+A9On6XlTot7DhGP2S7gCUQ2XaKKJmyCHTrsOHYMT 40jR8vz6cCVKHECo8JwQmDvOkomimdyj7FKZ3EOTAYEp1Irl4d+XU0m46ooJaYPLM3S/Yv2w cU8UN5s44P4g0XbCYLt/eB+WLlnk6KatdcR5hAk3Wg1MjlvIu1zheFqCSD5pyfJFaiqaD5AS SDTCld0+YE6Gungf8F4YAS7QIoMwguRNz3N+xxPFzdwn0W08uNmROWEqunjRgmA3/kWCWrS8 spVOlo5CkBaQFyM24ULZlxLUpbBggzmtykp0zTbZ7bTGEN+/qbkfBc957fglXBkNG4kJY8AE Fpp92+waFiRXt85W5cqX19qtvKmIjho+iFP/AYNUZmbAGgCWHq++8opatmypVzdZRgSIQBog QMKVBoMUqYs24YpUD+e8CNcVkoi3kpjUHTv2m5orhAt+MLbYk/d33/1vNfvTacHTrVplqzvu 7KePYXr3hmiC3JKV1VxH5YOJ1hdiNmiLTbimTv1A5X78d/u0wrV97w2QtFWrPlcvvvCk47z7 wA/hgr/YldJ/KER27dyu1qxZ7mgOpGn06Am6DOZ5D43o7zhvEy6vHGJdrr9R9ehxq77m44/f FX+ufziutw/8Ei5gDuwhY8c+GGLqWa5cBTVu/At6UgES/tKkp+3bJbSPCV4XMSvERBramWmf 5Drag7bmqtZtddlm8Tuw/aAcFa2DeAlX/ow8vXJtNaU1WTDDgnit/Ju6p5pwYbJVpWp1/b5B K+dOyArTqS5du+vuQZMxx9LOmT6b7akkXJj8wvfJyJlnnamTHeMY4w+NkVuWL1+qfWVQnkzC 5UVEMQHH+wjyBFxhymkLSAlMXKEdm/bJFJngOsOw2+avXu2btuIhDuZaexsr4cJzdetxoyZU e8VsbvHC+XYzej+rSVMFH0bINFnYsP0WbcLl9VzRcNONJuEjHtywOFG+fCDZ9/59+0L+k+zA LV9tKlTr1q4J9tQmXDAVzZ+eF2K6l5nVVHzDArhhQQgLQ+HEL+FqLRpJEHho1PD75BZ7XJYs Xii+oJFNvjMzs7RWb434++3d4zSfdLfNYyJABFIbARKu1B6fqL1LlHBFu0H7Dl3ULbfcqavl 5r6npk55P3iJrSU6eHC/+vDDt8Vf5/OIq3bBi2XHJlxeWiAkzZww4X/0JTCZe+rJUfblIft+ CFfIxR4F45+apCqUryhO2ofU0CEBjZKpZggXJnB9+wSIlTmHbVaTFqpv32G6aP78WeIHNsk+ 7dj3S7juf+BxCSRwmTa1vLdvL0db5uDJP7+kygvx2r1np3r4oYGmOCnbSCaDmVlNtKM7bhRr Ut54CBdWfHMnfxjyPAj6glxHEJA9kD4vOdWEy6sP7rIO11wrgRHKhJ2smfqnknCZe5qtPdmN JWhGMgnXurVfOAKwmD61bddB+/zAxAxaA1s6XdtFm3EhQMbM/BOLRXYdkEpM1EEgwwXfiIc4 2Pcw+7ESLvz2dZT3ARLO9A2kAeQB4jZDtSf28eCmG03CR7Jws7sCk8Oc7jfqIrdpnk243Nox 0wY0UNBEQT4Tk2f4c4UTv4Trelk0gXYfRAqEyi3QwmOBALKpcKMEhFrrrsJjIkAESigCJFxp PrA24Vq5cpkEqFgd8kQ53f6gypa5wFPDhcp16zUQx/QO6sLqNfTqHP60jECjgUkTxE24UPb4 mImqikQnNAJzncMSSOI7CbQBX4mCjWvFzPGzkIAZqG8TLi8tEeq8/MoHepX3ZBEuYAPiCO3D Oa58R8iNBSwiEa4jYkY4eOAd6KpDGoiZ5mAx14QsXDhHvf7aC47z9oFfwvXQqKdUjRq1BNNf dBRJuy2zD/87RFzcL5EKH3ygjylOyhZ+M62uCgQJQVRBO9raddfn6PsimtiM6Z/EdL94CBeC ZuS5tGu4GQIVXNGsub7vpsJCtWN7kd53fxQX4cLkHlpAmBXh/bIFE0m8b+FWx03d05VwrVq5 QvtJGhzM9mrRqCKCoCfh6iyE67xS6pD4y82d86m5xPc2WcQhVsJVTjQ8bbPb636GWziAFr65 RLKDuLW5NuGKBzfdaBI+4sUNuQpr175UNF3lxfeqnGjrz3D0xvjBRSJc8PWDCalbELEU33/I fEk+DR/QcOKXcHXvcZP2G4OPoR2ExbSP7zfMsiHugEKmDrdEgAiUTARIuNJ8XG3CNWNGrgSm eDPkicaOf1H7E3mZFDbObKbNAo2fVsjFVoEX4apdp57q3v0WCYRwuVXTuVtUtEVNErO2AxKQ w5biJFyY3N59z1Cxkb/C7pLnfqoSLs/OugpPBuEKmCPlaMKAicWMaQH/EdvJH6HgsbIeiyST cMVyP9QpDsJla/8i9ZOE63AQnkSJQycSLomI55+oBgcgwZ14CBfMQ69s1VovSkS7faoSrmj9 xnkSrlhQYh0iUHIQIOFK87FMlHA98+xr6nyJiARB8Af4Su0TnyUj9SW3VHZ2wLTFi3CZeo0b X6HqX9ZIViQrinlPBXWBhPUtXaq0OS3OvgvVKy9PCB5jpzgJV48bblVdugTMUo78cETIwUq1 fv1qdVQcqY3c2vsurRlMVcKF6Ijz5s003fXcIp/YjOlOMyvPij4Lbf8RaA6gQWjYKFPVrnOp bgk+SF4rvF63OR0IF3xtgBkEPiOYKMI3B2NopHmLK7U2hoSLhOt01nDZkVCRC7KoqEgi/Z0w +ztDIue2Oa79S1XChTxpRV+fCOZhvuP2FqaMduoK+xz3iQARKHkIkHCl+ZgmQrhss7ddu7ar Rx4eHIKGHREvEuEKuVAK2rW/TvXsebvO24QEwfcNCviCmbrFSbiG3f+Yqlu3ge7KG5Jna8H8 UHMjYy4ZiXD98OMPatCAfzePFNxmZGSqgYMe0sfJNikcMXKcjt6I6IqDBv4xeM9TuWMHx9hU WCC+CF/oUM5IUBqNMLj7mR6E60zJw3WD7nrR11t1Hh33c1zWIEPVq3+ZLnbn4QKZwmo/ZOH8 eTqHmD6wPrLbSVQ6CXUeDb/0MilMDLdkabjwHUbY93glHk2N171iNSlEsltEKYSE88FCigVj PusOwJAobl59j6csHtyukyinCKsOP00EOrGjeaIPMC/sJqZ7kEiEC0m54WfoFgTVQWJ2SLJN CuFbBuuJcPd294XHRIAInD4IkHCl+VgnQri6db9Zde36e43A3Ln56p23Xw5B46bf36auvTYQ Pc1NuOBHVKVKdX3Nli2FjrDqpiHjb4QcXwP6365DGJtzxUm4npZgHGXEMR05dfr3u83Tx+wv z72pQ+JHIlx4lqFD7tI+a+a5sG0rWsHeoiGDhDP11Cflw/hwbRd/o8dGDzHFYbd9JBhHEwnK ARk29E8SJvtg2Lon6wR8Ea7rkqPzWSEgAXxI2nfspG+HZKxfro/dGTwdCBceLKf7DXrxYL8k XEaQArfYK/NTcyfrd8vUQV4hkNGjRyWR98ehwT5QD+H0kR/MD+Fy5zkz9ztZW79BM9CPRHBL lDiYRNnhQoAjIt41na7TvnNIC7FoQWg0QDxDPMQB17klVsLlDDayRRJtOyO8ol075P0sic54 RKI0GkkUN9NOolu/uGE88HsAQVLjRR7RGUuff74EFOms60QiXOH89pB+AWkYIG7cdKH1YXy4 wn3nrap6F7+ByPV16FvJAzhnlvu072Pk7gLBxP/nNistgO+GeAERIALFjgAJV7EPQWIdSIRw Zbe7VvXqFSAFOySp8OhH73N0Bs7mw0eMDQbFcBOurjk9VTcJOgHxMhlELi34j8G0EGGZQbjs sPPFSbiM9gp9f00CWiySwBa2dOzYVf3h5j/qomiEa6bkuXr/vdfty1W/ASNU40ZNdNmbb06S ldTwf75PSURBmGEiCMbIkQOiJiq+8abbVOfOARIMk8K333rJce+2kj+sZ8+A1m3DhnXq+efG Oc4n66BxZhNVs1Zt3Rxycl1yPHz47Fn5Ejjlu5hvUxyEy550YVKHyV00MRoovMuzP82XCe73 wUuQ0BYTd6xuIxz1jGnOgCHZEkkPZraQBeKoj4AytiBoC/ILQaIRruqS2LpZ8wDhLti4QW34 cp3d1Endj4dwJYJbosTB9tVbtXK5mHltdeBjm8FGWiiwA8UYja6joRgPYiVcaM4EoEGuJiT4 RRRFI5iEg3SAoOB9RMTO3347Zk5Lqo/KEgipjT4uTh8uv7ghWEaOaJKxoIPfw2mfTNXb4IPJ jj1mkQgXSArytuH32wj8T9t3vEZHA8X53Mn/0PiZ8+5tx06dFZIQIxhU3tTckL646zdr3lJV F5IE+WzubDGFPOCoAi147Tp1dNnqVavCBvVBBYztxInP66BROB4/bqwkuC/ELoUIEIE0RICE Kw0Hze5yIoQLJimjJOLdv4pNPGT16uVq3bqVYg5RJMk5a2rfrWrVAn8eOO8mXBkNs9TAgSNx Sue3WbFyqYQwXit26fslwpSE3s3I0luc37lzm3r0ESehK07CZWuJ4B+wYsUStXbtCh2RsUmT lqpFi6uD0RmjES78GS9cOFu0Omsk5091eW7xZZLnx6QBSUlHjx4aEjAEmBgZPOQR1UB85SDo ywbB8OefT0yu0L6d9Lly5apChMepUkKIMdlCrq2VKxbr/taqXVe1bNkmmPz3o4/+Jjl6vDUq 5v7xbitUrKSgQbAFvguz8qfbRY59RAhD5EtbYIYHR3lENty8+Sv7lCZuWF02YjQW4aIUmnrR tjZpQf4irB4jyp0R4I8oZ7bY0c3gh4WQziCWpUuXluThDXX4cdT3IkGNGmeqWhJ1DQKitnXr FvHh2q2/e9WqVZcV93qarOF8NMJVShYwMBHE+3VM3o1dktD30KETk0q0cfDAfkeCYJQlQ+Ih XInglihxgIlm2+wOAazku7L5q0KdzwgEGbgjYhzeR0y+58EXUXKgeQnqQ6MLwfcRua2OiGbX li3y7tqkB21j0cqWCy+6SMFcEAJTQdzXCIjV9m1fm0OthTHJsEHiQQh/lO8IzO3wviCFAMQd KRRlieKGNpIh8eBmtES4/zff7BGzwW36dxHPjZxwiPRpJBLhQh0s8K1bu1Zr/ypUrKigMTIL H/u+2asWLvjMNOW5tbXW+N7u3LnDYeKI8ca4G0HgIPxG4buJ8cRiyIH9+9U5556rKsrvZZ1L 6wbfxZmSpwtBh8JJY/nNGDBwkD7900//p+7te3e4qiwnAkQgDRAg4UqDQYrUxUQIF9q97fa7 VZs214S9RUHB+mAEQjfhwkUDhHA1FOIVSUAKoEVasnieo1pxEq4qVaqpBx4cq0mLo1PHDw5J WPtf5A+zUqXKEcPC4w/9qEzAQH68JC/vIzX5o3e8TgXLQJKGCOlyhwk3FWD22OeeW8yh3l7T KUfdJJouN3mxK23eXKCeeXp0zHnR7Gtj3e8sk9BzZDJqJFzOIHMeflAmpLMpi7SF5mz1qpXB KskiXFjpbte+gypT9oJg2/ZOuOTD5v52XXsfTv4IIoJ33hYQSuTZQqh+L4E/3q9Hj+r+RCNc uN4mcF7tgQwiz0+yJR7ChT7Ei1syiEP9yy6XgD4Bf81weGz4cr0Q5S/DndbltrbMq2KumIpi DI2YpMvmONoWE/pZoskygkk7EumaJMCm3N5igQNaHJiq2pIM3Oz2Etn3i5tNWrzuC/8oo0WK RLiADRYngKNb8P2cM3um+v7wCTNMdx0cwwwYBDDcb5aXiXBGw8aaWHm1Z8rC+eWZ89jm5HRX 3Xv00EVbtmxWY5543D7NfSJABNIMARKuNBswd3djIVxPjHlOQSuyT8Kyjxje19EETKByut2s tVlm4oxVV/gzFBauF41Dgbrzzv76Gi9tCRJ0du3aU/LBXK39nezG0Q40W4iSt2zZAvuU3o+F cE166e/ab2bjxnXq6f96NKQNu+DR0c+o6tUvViBLw8SvKpogeTB81GrWDGgeUB+aix07vlb5 +bliLnmLuki0gIj0d/8w5+qiSXyMPFxvvPaimJPlKPi0GdKEdmbMmCy5omLTLqEv8KmrUvXC YNRI03+Qun739jaHwW1mVjPVo0cv8aOr5phUIEDJsqUL1BRJVA0N28kU98QfE0bb1M597+tl EmEwcp/zOnav3puJe6IaLtwLJKjB5RmiDagiE6tzHRh+K6ZASNzsFhBc+H9cWreufi/NeUy8 sNKNSTs0IF4CbQfwqlylavA0EmdjBRxEtWGjxjqfVDQtobkYJpw1a9ZUpUTDdsYZ/2aK9Xbt F2u0NsdRmIQD9B1EArJ0ySK1W7RrsUi8uMVCHJATDqZr+M5Nz5vi2R30G8luYR5mC7Bev26d JKqN/hyYuCNgycU1auiJvL3Ygd86EC5oHI20aNlKgaDGKoe/+06bqtr1sTAArQjM0Gyy/v+i jS0q2qrfG6/3LVm42X2Jd98vbrgPtEGNJFeW0eKh7EcJUARtN8hKF0kwDPy/Fk2x7d+Ge/W4 sSeqaw31bklAXEvMnsuVrxBcnPpefN1WLF8mUVSdWmF9kccHvrfQNJYTk2BoqmyBFuuTKZPt Ir2PHGkZcg3MAm1BVMKCjRtFy7rLLvbcv/uePqr5cdPhuXNmq7feCk354nkhC4kAEUhJBEi4 UnJYTn2nQLxqXCJ/TOJLtH3bVm3u5LcXVcUPpZoQHsiPsmKPIBA/CCFJdcEz49kx+S0QYude LY61//hjrlc/Q5uvIFHzqZKyZctp/ylMuvcLUd61a3vcz3Cq+lwS7oPVb5hMgRDDHDJWwXet 1HG/EDvQQazX+6mH4AvI/+VHDhw4oHME+bnGT914cfNzj3B1oak473i6CmgSoT1OF8ECAd43 LDbY5q/J7j9SGFSqVMlXs0h+bptB+7o4QuWzzz5bSEsp3baf75i7SXwPYPoL0nYysXPfF2N2 XqlS2nQU/QdBi1UefuRRWcS7RFd/9dVX1OJFC2O9lPWIABFIQQRIuFJwUNglIkAEiEAyEIBW BMEX/MjePbtlcheqkfbTBuumLwKZWU1lAaeWrweAeV6sGiNfDZ/GlZ97/q/iA3iu1pgPHTJY /EUjmz+exlDx0YlAWiBAwpUWw8ROEgEiQAT8IwCNDnxK/AgmdjDlpJyeCFx0cQ1VQYI/+BEE ikFgD0pyEKgqAVeeGDNWN7Znzx41csTw5DTMVogAESg2BEi4ig163pgIEAEiQASIABEgAk4E rrq6tfhO/4cu/PzzZWrSX190VuARESACaYcACVfaDRk7TASIABEgAkSACJRUBMqUKaND2OP5 DkgAn72i5aIQASKQ3giQcKX3+LH3RIAIEAEiQASIABEgAkSACKQwAilHuFrf1UydVeosT8h+ +elX9dmkJZ7nWEgEiAARIAJEgAgQASJABIgAEUg1BFKOcF3eua6qXM/bYfdQ0RG1cvIXqYYh +0MEiAARIAJEgAgQASJABIgAEfBEIOUI1+9Kn6Wa985SZ/7Omcjz15+PqYK8IrVn227PB2Eh ESACRIAIEAEiQASIABEgAkQg1RBIOcIFgEC6al91iSp3YVmN17c7vlMHNxxRv/zvUXVg/75U w5D9IQJEgAgQASJABIgAESACRIAIeCKQkoTLq6cVKlbSxSRcXuiwjAgQASJABIgAESACRIAI EIFURICEKxVHhX0iAkSACBABIkAEiAARIAJEoEQgQMJVIoaRD0EEiAARIAJEgAgQASJABIhA KiJAwpWKo8I+EQEiQASIABEgAkSACBABIlAiECDhKhHDyIcgAkSACBABIkAEiAARIAJEIBUR IOFKxVFhn4gAESACRIAIEAEiQASIABEoEQiQcJWIYeRDEAEiQASIABEgAkSACBABIpCKCJBw peKosE9EgAgQAfM62VYAAADHSURBVCJABIgAESACRIAIlAgESLhKxDDyIYgAESACRIAIEAEi QASIABFIRQRIuFJxVNgnIkAEiAARIAJEgAgQASJABEoEAiRcJWIY+RBEgAgQASJABIgAESAC RIAIpCICJFypOCrsExEgAkSACBABIkAEiAARIAIlAgESrhIxjHwIIkAEiAARIAJEgAgQASJA BFIRARKuVBwV9okIEIESj0DFspVVrWp11cHDB9TW3QXq12O/lvhn5gMSASJABIgAETgdEfgn AAAA///4Hdv5AABAAElEQVTsXQdcFGfzHhUrVUAEQUREwa5YsfdojC2mGTWJyWeMXaPGxMQk pqiJf2OaxpKiJjGWxFhj772igogKiqKAgFIVxPafeS+77t7tHdxxlIvz5vfd7r59nz389rmZ eaaEbzX/R2ADxb2Sh9hlclKiDey28LZob+8AzVu0gRL435WrlyA66rzB4iEh7aF8+QqQfTcL Dh7YbdBeVBV+fjXA37+WWP7kySOQmnorz1vp0LE7lCxRIs/9qeORI/vg9u1Ms8YY69ygYRNw d/OAnHs5sH/fDmPdDOqbNmsFTo7OBvVUkZ6RBsePHdRsK+6V9uXswc3JA8qWqaDa6s20G3Ar I1lVxxcAjhWc4LUeY6FUyVICjv1ntsLx87b57Ivz8/R09UasXeDBg3twKf5CnrfqU6kalC/r oNk/624mXEu6otnGlYwAI8AIMAKMgBYCJZhwacFiO3UhrTrAG2+MFhvevHkt/LlqqcHmp8+c Bx6VKsPNW8kwedIwg/aiqnj9jTHQqlV7sfysWR/C+cized7KgoUroVQp3ctqXgd9OHUsxMVd y2t3k/2mffI1eHtXhYzMdBg/dojJvsrG2XN+AmcnF2WVfB4TEwWffTpZvraFkzJ2ZaBjcE8I 8m0AJTQI8MHwHXD03D5buJU879GuVGno0rQXkiU7iE28BGeij+d5rNTR36sW9G7zsnQJ0dcj Yf3B5fL1f/HEGriZi8tLnf8Hnq4+cDs7Axatn53n4W/0HI9ETfuHkdiky/DX7iV5nos7MgKM ACPACDACTLhs/DvwpBKu+QuWg51dabOeXnEnXJcvR8Hnn9kW4SLiUa96E6PP4b9IuOzLOcDQ XhPFPZ+NCYVtx9YavX9jDSVLlITnOw4BL7eqcOfubdiOc5hjgTE2b3GutwZu5t5fgRAuJNl/ 7TH8YcvcvXF/RoARYAQYgScHASZcNv6sn1TCVSMgEMqWLad6eq8NGQmuFd0gMzMDFi6co2qj i6iL5yAnJ8eg3pIKSy1cgYF1oZSdnWrJUaMmQ5kyZcEWCddbfSZDuTLl4T66bO0/sw3ib16D h48eyvdHloU72bfl6//CiTWJQ/myFeBuTrYKs/8CRlr3YE3ctObXqrOUcLk5VYKS/7p7SvM+ 3/F1IIsuWTWZcEmo8JERYAQYAUYgLwgw4coLSsW4z5NKuLQeySeffQNVvHwgLT0VJox/Q6uL 1eosJVxaG5g773dBHm2NcFVAsvBm73fELV2OPw9r9/+hdXv/ubqiIA7/BRCLAjdLCZcW3sP7 vgtlS5djwqUFDtcxAowAI8AImESACZdJeIp/o7UIl3+NWtC5c0+oXNkTHDHG6B6KQaSlpgir y6Z/VpsUm6hc2Que6t4HPD29wQnHlsTYqrvZ2ZCCIhihJw7BPiOiEvoxXC4urlCvXjD416gJ D+4/gKSkG7Br1yYIDwvN04OwhHDZobWpa7deULduI3BydoFy5cpDRnoa3MJ4t717tkKYkbUl wkVCF1PfHwM9nu4Hdeo0AAcUxMjEuri467Bh/UpISIjLde+WEi7ae89nnhPCI+7uHvDo0SO4 fj0WKBbs6NH9cDO5YAVmlIQrAl3rtubBta51gy7gWN4JUjNvweGzuw2wcXf2gKZBbUT9havh Kjc7DxdPCA5sJdrORB2DnPt3oYZ3EFTzDBAvwikZN+E8jrl4LfdYwDp+jXBcDXBxcBVj0+/g M09PgpMXDkH67VTVvlwcKkLLuh3lOordqulTR1yn4poJKdflNulEf+9U37nJM1AaLSRa5UjE HqD951bK4Qt/w5rNwd25MjjbV0QMchDLmxCTEA1R1yI0h1sTN80FjFRaCzeanuIDa1drCDWq BAnBESI+GdnpkJaZAvRduJGi/XcmEa7MrHRYvOlbaFijGfh7B4JDOSfIxPFJqTcwxnBvnqyw lhIu2nsD/6bg4+EHFR3dxN/pjZR4iE+Ohei4c5CNFs7cir+/P/Tu3Rd8q1WD+Ph42LhxA0Sc Dc9tGLczAowAI8AIFBMEmHAVkwdh6TasQbj6PzcYuiHpMCZCQcTph3mz4FK0ocpXs+at4dVX hwuiYuwezp49Dd99Ox3u37+v6qIkXKdOHYdGjZqq2uniwYP7sG7dKti44U+DNv0KcwlXFRS9 GDlyMpJML/2pxDURGCKLS5f8YNAuEa7UtBQ4FxEGISHtDPqkZ6TDLz99a5S0SQMsIVzVqwfA a0NGCeEOaR7lMeFGHMz9bia+nBmSAWW//JxbQrheeWoEuKKaIRGVxZu/M1jer3IA9G03SNTr K/f5VwmE3q0HiLajkXuhcc0QKI0CFvol/PJJ2H58nX61uHYo7whPt3wOqrhX02y/R66Rp7fC 6ehjcruXmw+82Ol/8nVeTg6EbYNjkQdUXSX3S1XlvxfrD65A4YxzWk1yXXWvmkjaeoEDElat chlV+LYe/RuycrJUzdbATTVhHi+shRs9s75tByLJ9NRcmf5Oj5/fDwfCDNVCJcKVcScVolCY pHHNlgZzEBlbf2C5UdImDbCEcBEp7tGyvxDukOZRHpPTEuDvvb+iqIdpt9tRo8dCcHCwPPTC hYswc8Zn8jWfMAKMACPACBRvBJhwFe/nk+vu8ku4WrRsC0OHjhPr0IsLWZXi8CW9oosLVK3q J8cxxMbGwLSPJxjsZ/ZXqLqHliEq5Mp3KfoiZKCFhxT8fH39oXRp3Qvx5s1rUEHxV9V4JeGi hkyUbI88Fyak1gMCgoSyItXfvZsNM2ZMgWuxpqWYzSVcH0z9Avz8AmgJyMq6g1apWLTk3YZq fv4qJcHFi+cZSL9LhIvGPnz4AFLTUiHmcjSQpcnHxxdxK0lNYAw30fjvhyWES7l3sqJduBCB v5w/RGtXID43HZlISr4B/zfrY6tZusiqElJPaekpBX6eNcVdpN9OgSSUgNcvYajgF5MQJVdb i3A9QMypkFUnA1+YPSp6ga+Hv7wOKf6R8p9+6dt2EO5Z98yJXF3DeBwq3pX8MD6nrDinuVfv WQLXk6+K60poWevZ8nlxTh8lSpZA65KruKZnr28Ro4bDaLGKvHpG9JE+BnQZCmXtHscdlild FiqgAAeV3AhXBZTdH9xtJEqV62T3M9Ail5SaIIRjqqDwBikAUtEim0rCZSluYnIzP6yFW/8O r0LVStXF6kQmE9GalYVCI95ImpVKguv2L1NZRGmARLjonJ4V4XYt+YqwbJJgCYmXUIm7eRVW 7vxZnBv7sIRwKfeelBov/hYoxtHXozoKpviKpciyunLXTyYtXR9P+wT/PX38I8GtW7dg4oTx xrbK9YwAI8AIMALFDAEmXMXsgZi7HSXhOoY5nA4d2m0wxaDBw4SYhJYs/LjxU9GNr5EYs3Pn Jlj2+4/yeHeUkp/64Sywr2Av6mbOfB+FJx6/xDZEi9To0e+JtviE68K1Th6MJ63bdIIhKGRB 5cqVaPj0E128j6jADyXhSkM3vtkoDS/JtlPesPFvT5XzdG3Zsg5WrVwiDdU8mkO4atasDZPf 1f1CTCIb0z9/FxITE+R5Bw56Ezp2fEpch4efgq/nfCq30YmScF26dAG+/WYGinWkiz7eSLhG jnpXJozz5n4JlGfMWDGXcHXq1ANeHvg/MV1kZDiu/blKDOSt4ZOgaVPdL/krViyGbVvXG1va rHoiNM+2f8WsMfoqhdYiXLSJVbt+QVJ0Rd4PkcEWtXVpBsjasxZfwJWlWmV/6NdOt38iiKv3 LkV3vBTRhQhL24bdhMsZVZiKSbNWLBK5t5GkPpXcCFfH4Kdxb81F33NXTsGOExtQqOS+uHZ1 cod+bQcL8kE/mizbPl+4yolG/FASLqozFzdpnvweLcHN1dEdXuk+Six9OzsTfts6D8nWHXkr IfU64DPvIK4vxIbDP4fVlnAl4bpyI1pYskjghQpZzp5tN1hYXOl65a6fIe5fkk3X+sVcwlXT py70DNERdSL/Gw+tVImjkLWyvn8TsczmI6sNCLpy/Wee6Q39nn1WTr2wfds2WLbsN2UXPmcE GAFGgBEoxggw4SrGDycvW1MSrtz6axGuZpiI1wNd6h4+fAS7kHBlZ6vdkZQv73/88RPs2P6P vEzr1h1hyOu6lyFyvVuCliD9EhzcQqjy5eTchdPoNqgsSsK1fv0qWLtGnYeIxo4Y+Y4YcvLk UZg39wvlcINzcwgXxYu1wv1jeAVcv3YVTp06ppqPSNO0aTqlQ3LP+2CKLteZ1ElJuLRyiPV8 pj/066fLs7RmzR8Yz6V+EZTmoaO5hIswJ+ypTJ/+noGrp6urO8yYORddRO2ASPiC+XnPPyQm NfJBSWQpDkkqFJsiuXnRS2yKRoLjU1FH4ezlxzF41iJcFKe18dAqaSviSEmEh/aeBBTnRHtZ svl7VXuLOu0gpG4nUbfpyF8Y7xWmaidCMOTpscJaRG5mP274StUuXVhCHKSxyqM5hOvFTm8I CflstPD8vHGOiN1SzlWvejDmBustqsidkixdUlESLktwk+bJ79ES3MgKSPFylNj9ZnqiUMFU 7oNI0/+e0VneyT3vt63zlc0qC9evW+aJOZQdlLjtOLEewi6dUDarzs0lXG0bdoUmtVqLOSh+ jOIWlYW+p0N7TxT53M5cOg47kUSbKtWrV8c40XoQhV4E5yMf//Blagy3MQKMACPACBQPBJhw FY/nYPEu8ku4clu4c5eeMGDA66Lb2rUrYP26lfIQpZXo5s0k+Ouv3+BU6FGVtUXurHGiJFxa ViBHJ2eYM0fn5kMuc19+MVVjlsdV5hCux6OMn838cj64u1WCVBQPmThBZ1GSekuEi4jkiOE6 YiW10TG4SUsYMWKSqNq7dxvGgalfBJV9zSVc70z+FGrVqiNcLUeOGKicSj7/YtYCcEPiFRd/ DT78YKxcb82ToozhOnR2JxyJ2GtwOy93eRPdC6tgHNMdWLD2S1V79xbPigTNVPkTkhZyL9Mv Ad61heWD6oksahVLiIPWPOYQrmGoBknuhPHo+rZCw/WN3D0HdRsuljlx4SDswzg0qSgJlyW4 SfPk92gt3PT38SpawCqiJSwd47R+3vi1qlmycJG4yLy/p6va6MLb3Rfzoen+faO4wINhOw36 SBXmEq4+mNi6Oia4vnsvG35YM1OaRnV8rcdodG90E26Sy7YvVLXxBSPACDACjMB/BwEmXDb+ LJWE68SJI3D27GNrgnRrvfu8CC7OFUHLwkV9AoPqQpu2XaCqjx/GIFWS3VaojWKRSpfWKavp Ey5q//Tzb8EL1Qml8uDBA0hDIYlUFNpISkrEmKwz6Oa4x0Awg/orCZeWlYj6LFy0SuyhoAgX YUPE0auKD5RHhUJlodxYZMUxRbgy0I1w/NghymHivC66aY5Hd00q+/fvhMW/zBXnWh/mEq4P pn4Jfn41ENN7QkVSa06KvyPFxSRUKnxvsu5FXKtffuqKknDtCd0EoVFHDLZPyYQptkeLcJF4 QWDV+mLMXHz5vocv4ZYUaxEHcwjX6P4fCEtITMJFWLPvd4NtKy09+nFcSsJlCW4Gi1lYkR/c CKuq6BJaGWP1ypZW/52S8iP9nZoiXJQPbtF6Q0svKTi+3PUtcUckvLH/zHajd2cu4XoOY898 MPaMrL/XkmI056U4MlJcvJWRBEs3G/83QnMwVzICjAAjwAjYDAJMuGzmUWlvVEm4Nm9ei8IU Sw06Tp85T8QTaRGuRo2bC7dAKU7LYLCiQotwBdQMgr59B0BQUD1FT/VpTEw0zEe3tmQU5FCW oiRcJKk+7K2J0LhxM+WWNM+LK+HS3KxeJROux4Aw4QKwNcJFRKorukrW8Wv8+EEaOSuuhMvI dlXVTLhUcPAFI8AIMAL/OQSYcNn4I80v4frq61/AydFJoEDiDxQrlYgxS1KpjbmlOnbsLi61 CJfUr1GjZlC7TkNwQxc8iiGq6OoGjg6OUjMcObIfFi3UxURJlUVJuPo9+zL07NlfbCUDRTPC zpyA8PBQuH9PF1BPDS8PGiosg8WVcJHq2u7dj13HJFyVR8ontnnTGmWV1c7ZwgVwFvOPbctD /jEt0NnCtVYLFlVd44AW0L5xD1FHViqKu7scfxEktUVq6IGuoo4VXIqthYv+Tsld0VRJz0yD CBRD4cIIMAKMACPw30SACZeNP9f8EC6l29v161fhow8NZYaVinimCJcWjJ06Pw0vvPCKkK6m BMFvj9PFSkh9i5JwTXrnEwgMrCu2sgTzbO3ba+hKJLlLmiJcJGU/bsyr0i3Jx/r1G8PYcR+I a2u7FE55f4ZQbyR1xXFjX5PXLOwTSwjXYMzD5YZ5uEgl8Od/vjHYsj/GvPTG2BcqpvJwWWKp UVq45q+daVKG22Bjior8uMYpphGKiHlVKRzZb4pImnz1xiWhrqich86d7F3g9afHiWp9AQZb dimkvGu0fyrrDvwBl+LOi3Plx8Cuw6CSi5dJwnUHZeQXrpulHCbOK2O83wCM+6NibZdCUvQk ZU9SV1y0/v/EGvzBCDACjAAj8GQiwITLxp97fghXn74vQa9ezwsEdu3aAr//Zhi0/dzzg6F7 976ijz7hojgiLy8f0RYdfV4lqy7BKsUbkVz1mNGviHxXUltREq7ZKMbhjKIc9+7lwOhRgzVj zL75bqmQxDdFuOheJk4YKmLWpPuiYwe0Cg5CCxkVY66eohE/pBiuq1dj4JNpOsU1qU3rOBzF OJqgKAeVSRPfhJSUm1rdCrzOEsL1LMqy+2IsDlkoKI6Kfv1XFqVFQ18qO7/EoU2DrtA0UKca twolwKU8W9L65L5GAgxOmKyW9vX96s+lJtWxKAiXRFRTMzFh9KbvVPuhC2XCaBLMIOEMqeQX N2me/B4twe1/z7wtEj1TzjQSvaB/R/TLm6hMWaGsvUnCRWPmrZmBOf7uqoaTSMozrV4Udfq4 qTrihRTDRakISFo/t9KlaS+oV72J6PYDrn1Xb+3cxuu3V/b0lONMEzE+9g7mDOTCCDACjAAj YBsIMOGyjedkdJf5IVwdO3WHgQN1pCAWkwpP+/ht1Tr29g7w7pTpsiiGPuHq1fsF6IOiE1S0 XAYplxbFj5Fr4cOHDwXhUsrOFyXhkqxXtPdfUNDiAApbKEvXrr3gxZdeE1W5Ea6tmOdq5YrF yuEwaswUaNRQ97K1dOl82Ltnm6pdefElKgqSGyaJYLz//phcExX3f24w9OihI8HkUvjbrwuU 0yHZewotizqrW0REGHz/3QxVu7UuLCFcynxS+lYqIjykMkjWCipLUdb9lkJqPr/EoU61RtCt uQ63i5gwmfIiKUugb310T+svqhJuXYPlO35UNsvnJNIwou97QqghEZPZLtumxl/umMuJOS6F vVq9BDW8g8SMWkmdlZagtft/F2530vL5xU2aJ79HS3B7Ga1XHv9+H/Tvi/ajfGamYrio74Gw 7XAscj+dyuWp5v2gdrWG4nrdgeVoQTMuty4pCpIIxo8bZudqIW1SKwRzu+ly+R05twcOhe+S 16WTGkj2nhLfxxIQdT0Cth5do2rXv5j2yWeY1LyqqF6/bh38/fdf+l34mhFgBBgBRqCYIsCE q5g+mLxuKz+Eq6qvH0xFxbuSmL+ISmjoMQgLOwHXYmPAt5q/iN3y9vaVt6JPuOo3CIaxY98X 7SSPfvzEYTgXcQZu3UqCgIAgqF8/WBypw7VrV+Djj9SErigJl9JKRJL2x48fgjNnjgtFxiZN QqBly7ayOmNuhIuUGffv3wFnMUGyJ1r8yJ2Q7p8IRFbWHcznNdFAMEQGFU/GT/gI6mKsHBXa SwRiePdutrimD5pfmfTZ07MKEuEZ4ICEmIgs5do6cfyg2G+NgEAICWkPRHaprF69DP7ZWDAv ZpYQLi83HyHDXbJESbRy3Uc3rgNwJT4KypUpD8GBrVDVzU/sO/5WLKzY8ZM4lz7ySxzK4xoD UTrdobwuZpFigcIvn0CrCb38BqLrWhBQHyqHzu5A2fl90tIGR+nlmxoooW5ccoyqz8Vr5+BW erJcR/LjPh7V5Gs68XCpIl666ZySGZP1SllCL2KKhX+tIlU9qmOS3lfEd4pe+Emh8catOLAr aQe1/RpCtco1xFDKRbVs+yKV5TC/uCn3lN9zc3FTWolSM26K/GL03EqVKiXyczWq2RJKY9Jq KrkRLrKqktvglYRolJF3E+OrVQ7Q/Z1iGoGlaDnMwjxnxkrPkBfEGGqnvVyMO4c/kjy2mNHf 6fHzjy2LFcrZo1T/CGF9e/joIZyJPgYXYs/iMysFVSr5QkOMTytfRvd3uu34WlW+Oq09zPth ISqPlhVN33w9B06fPqXVjesYAUaAEWAEiiECTLiK4UMxZ0v5IVy0zuBXhkH79t2MLhkZGS4r EOoTLho0BglXAyRepgqRArIiHTq4W9WtKAmXl5c3TH5vuiAtqk39e5GCsvb3cnLAw8PTpCw8 Wezu44sWkR+tsnHjavh79e9aTXIdkaQJSLpIhl6rkNvj8LcGqJq6PdUbnkNLF8n2GytRUZHw 1expec6LZmweY/WWEC6aS+napzV3Dr7Ertz5EySnJaqarUEciFQ90+oFIMJnrFxD8rR691Kg l2RjRWkt0+rzz+E/8eU6XG5SJl2WK3M5IStKZlaG3KsDikc0wpd0Y4VyTa3Z9xuSv6uqLtbA TTVhPi7Mxc0eScvArsOhAial1ioUC0jy/m6Yh8wU4crGXFgPH9w3Os+eU5hm4OIRrSXkOiJp FO9Vxs7I3ykS4bl6bqhBvg2EVdXU942k/tft/8Pk983f3x8+mPqR2MvduzkwauRw/CHmvrw3 PmEEGAFGgBEo3ggw4SrezyfX3eWFcH32+XdAVpFElGWf8u4I1Zwkj967z0vCmlW+vO7XfYqT SExMgPPnw4Fe2l9/fbQYo2UtoeTEvXq9AC3QIqQvLU/zkGWLVPKOHDG0FuSFcM1fsFyIbpw7 Fwaz/+9j1d71Lz6e9hX4+FQDIkuTMK4qt0LJgylGzd+/ltw1KysLYmMvw5Yta9FdcgD4ohWQ lP7emTRM7kMnUuJjysO15Jd5QASIYtok0kTzbN78N2zckDfrEu2FYuq8qlSVVSOlBYnUjRo5 SLqUj42Dm0O/fgMxjs5b/EovNZBAyZHD+2AdJqomC1tBlXKYP2hYn8li7bBLJ2DHifV5Xorc uFrX7yxbm2ggERyyPuwO/QfS8EVav+SFOPRHoYKqQqhAO+8SzemBuZzaNXoKvN2qqXDLRutG 6MVDcAKtFPfz8DJb06cuNA1qLZLulkE3Q2XRd/trhv1a1++q7JLr+cL1s+BOtjpOh/KIhdTt AM4OrvLeKb7pWuJlxG1TgeKW64bz2MEc3GhKVyd36NDoaRH7Jy1Bzyr+ZixaIfeg2143kXtN K75NSnxMCocbDq6A5rXbgTdaUaXnRfPsP7NNWM6kuU0daS9t8DnSd0iylEr9jSU4roK5tto3 7i4smmT1lkpmVjpavY7i9+2QSnVRalceO3fuAgMHDRZVly9fgk8/maZs5nNGgBFgBBiBYo4A E65i/oAKa3tEvPyqB4hYoqtXLkFCQpzZS1fB5MHeSHio3EYFPRKByERCUtwLxU/RvZNbZCQS u/v3LfvlmGLegmrXh4z0NKBEzYVVXFxcobp/ALpZ2UESEmVSnLT0Hgprz9I6lLDXxcFNWClu pifmiehIY/N7tENXNDenSuLlO+1OKionpuZ3ykIbT4SBSBe5F6Zm3tIUk7DGZkhlr2HN5mZN FY7km9z+rF2I4Ls5ewARzKTUBIvv2Q7/TipX9Eb3wdsqt09r71d/vjKly4I7KnSSVTr9Thpk 4P+0RED0x9H14FdexR/FOommvXv3YCL1n7W6cR0jwAgwAoxAMUWACVcxfTC8LUaAEWAEihqB etWDoQsmHjanHDq7Ey1Pe80Zwn1zQWDSO+9C7dq1RS8iW0S6uDACjAAjwAjYDgJMuGznWfFO GQFGgBEoVARIxKSev+kYTf0NXYiNMKn2p9+fr3NHYNb/fYVJ5d2ESM47kyaim7NaYCX3GbgH I8AIMAKMQFEiwISrKNHntRkBRoARYAQYARMIUGztd9/PE66IN27cgPfefcdEb25iBBgBRoAR KI4IMOEqjk+F98QIMAKMACPACPyLQN169aAE/nfnzm24dOkS48IIMAKMACNgYwgw4bKxB8bb ZQQYAUaAEWAEGAFGgBFgBBgB20GACZftPCveKSPACDACjAAjwAgwAowAI8AI2BgCTLhs7IHx dhkBRoARYAQYAUaAEWAEGAFGwHYQYMJlO8+Kd8oIMAKMACPACDACjAAjwAgwAjaGABMuG3tg vF1GgBFgBBgBRoARYAQYAUaAEbAdBJhw2c6z4p0yAowAI8AIMAKMACPACDACjICNIcCEy8Ye GG+XEWAEGAFGgBFgBBgBRoARYARsBwEmXLbzrHinjAAjwAgwAowAI8AIMAKMACNgYwgw4bKx B8bbZQQYAUaAEWAEGAFGgBFgBBgB20GACZftPCveKSPACDACjAAjwAgwAowAI8AI2BgCTLhs 7IHxdhkBRoARYAQYAUaAEWAEGAFGwHYQYMJlO8+Kd8oIMAKMACPACDACjAAjwAgwAjaGABMu G3tgvF1GgBFgBBgBRoARYAQYAUaAEbAdBJhw2c6z4p0yAowAI8AIMAKMACPACDACjICNIcCE y8YeGG+XEWAEGAFGgBFgBBgBRoARYARsBwEmXLbzrHinjAAjwAgwAowAI8AIMAKMACNgYwgw 4bKxB8bbZQQYAUaAEWAEGAFGgBFgBBgB20GACZftPCveKSPACDACjAAjwAgwAowAI8AI2BgC TLhs7IHxdhkBRoARyC8ClVw8oYZ3INxMS4ZLcZHw4OGD/E5pE+PL2JWBAO864FDBES5ei4CU jJs2sW/eJCPACDACjIBtI8CEy7afH9jbO0DzFm2gBP535eoliI46b3BHISHtoXz5CpB9NwsO Htht0F5UFX5+NcDfv5ZY/uTJI5CaeivPW+nQsTuULFEiz/2p45Ej++D27Uyzxhjr3KBhE3B3 84Ccezmwf98OY90M6ps2awVOjs4G9VSRnpEGx48d1GzjSkbAWgg4VnCC13qMhVIlS4kp95/Z CsfPPxnfu85NekF9/ybivu9kZ8JPG+cUOtl0cagIro6VoFSp0qpHei3xEmTlZKnq+IIRYAQY AUbgv4EAEy4bf44hrTrAG2+MFnexefNa+HPVUoM7mj5zHnhUqgw3byXD5EnDDNqLquL1N8ZA q1btxfKzZn0I5yPP5nkrCxauxBcW3QtjXgd9OHUsxMVdy2t3k/2mffI1eHtXhYzMdBg/dojJ vsrG2XN+AmcnF2WVfB4TEwWffTpZvuYTRkALgVb1O0FFB3fIzEqHPac2a3UxWefvVQt6t3lZ 7hN9PRLWH1wuX/+XT17s/AZ4uVaVb/H3bT9AUuoN+bogT1yd3KELEr4q7tU0l1mx80eIv2md f580F+BKRoARYAQYgSJDgAlXkUFvnYWfVMI1f8FysLNT/0KcG6LFnXBdvhwFn3/GhCu35/ik t7/afRRUdHRHd7hkWLL5e7PhKFmiJDzfcQh4uVWFO3dvw/Zja+FS/AWz57HFAXX8GkH7Rt2h jF1ZiEm4AGv3/1Eot1ECrfGDur4Fbs6Vja7HhMsoNNzACDACjIDNI8CEy8Yf4ZNKuGoEBELZ suVUT++1ISPBtaIbZGZmwMKFc1RtdBF18Rzk5OQY1FtSYamFKzCwLpSys1MtOWrUZChTpiww 4VLBwhdGEMgv4ZKmLV+2AtzNyYaHjx5KVU/E0a6UHdiVtIPse9mFdr+ert7wUuehYr1UjBs7 FLEbbqUnqdZPzbwF9+5b598n1cR8wQgwAowAI1DkCDDhKvJHkL8NPKmESwu1Tz77Bqp4+UBa eipMGP+GVher1VlKuLQ2MHfe74I8MuHSQofr9BGwFuHSn5evCw6BIN8G0L3Fs2KBJylmruAQ 5ZkZAUaAEbAtBJhw2dbzMtittQiXf41a0LlzT6hc2RMcMcboHopBpKWmCKvLpn9WmxSbqFzZ C57q3gc8Pb3BCceWxNiqu9nZkIIiGKEnDsE+I6IS+jFcLi6uUK9eMPjXqAkP7j+ApKQbsGvX JggPCzW4b60KSwiXHVqbunbrBXXrNgInZxcoV648ZKSnwS2Md9u7ZyuEGVlbIlwkdDH1/THQ 4+l+UKdOA3BAQYxMrIuLuw4b1q+EhIQ4ra2q6iwlXLT3ns88J4RH3N094NGjR3D9eixQLNjR o/vhZnKiah1rXHigul1wYCsx1ZmoYxjkfwdV34KgmmcAVCjrALfQze1ibAScjw3TXM4dXaqa BrUWbWHRJ+DegxxoGtgaXJ0qQcmSJSE14xaq5p2H8MsnNcdLlX6VA8AfVfZcHN2gfJnykH47 FW5mJMHpi0fgdvZtqZvqSC+9fl4BiNNDEfvk5uQB1asEQrXK/gK7m2hxOIXjb6SYfmYUi9Mw oAXu2R0cyzsBWSYSbl2DqzcuQ1zyVdWayosWddoJV8Db2RlwKHwXNKzRHO+hFjiUc4LbdzNR MTAJjkXuE/eiHNelaS+wUwgsVMcYrLKly8FdtNBc1nAFTEqJhxMXDimngM5NnoHSqNCnVY5E 7MmTWh+5xTXwbwo+Hn54H24Csxu4VnxyLETHnYNstJYZKyVRoKN+9WCoWrk6YuaMeykN9x/c h4w7aYjbJQjD5/2wAJQSKV6tlm89zW3dTLuBeB/QbKNK/e96zv27qOyo+64T/qRweP5qOKod 5h57qiRcW4+tgYiYU0bX1W9wRffRuv7BKLSB3zcUPMnMyoSUzGSIjDmT63dVmqtlyxDo0rUr VKzoChcvXsBY31WQnKy2sEl9+cgIMAKMACNgfQSYcFkf00Kd0RqEq/9zg6Ebkg5jIhREnH6Y NwsuRRvGeTRr3hpefXW4ICrGbvzs2dPw3bfT4f79+6ouSsJ16tRxaNSoqaqdLh7gS9m6datg 44Y/Ddr0K8wlXFVQ9GLkyMlIMr30pxLXRGCILC5d8oNBu0S4UtNS4FxEGISEtDPok56RDr/8 9K1R0iYNsIRwVa8eAK8NGSWEO6R5lMeEG3Ew97uZEB9/XVmd73N/JCi9Ww8Q8xw5twcaIfGg l0/9EnbpBOw4sV6/Gqp71oQ+bQeK+ogrp6CWT10VmZAGkGT3xkMrpUv5SO5gXZr2BnqB1SpE APeEbobIq2cMmts1egqCa4aI+r0oNtEOY3n0C5GAXaEb4exlbZLfpFYrCKnXUXPP9H3ZHfoP nI4+pj+tuH6h0+tQxc1XxE3FJV8R8uT6HcnNbeOB5RCbFCM3De/7ribGcge9k8vxFzE26XdV 7Vt9JkM5JKZaZf3BFRB9/ZxWk1znbF8RerTsD56uPnKd8iQ5LQH+3vurJtm1L2cP/Tu8JpT5 lGOU5+Re9+eexXDHCFlW9jXnvBmS+9b1u2oOIWL9x/aFmm1UqfyuH43cC43xu1NaQXylgfTj wPbj66RLzaOlhKsp/rjRsq72940I6smLh2D/me2aayorv5w1G9zd3eWqLVu2wIrly+RrPmEE GAFGgBEoWASYcBUsvgU+e34JV4uWbWHo0HFin/TCSFalOHxJr+jiAlWr+qHVQacEGBsbA9M+ nmBwP7O/QtU9tAxRIVe+S9EXIQMtPKTg5+vrD6VLlxZtmzevwV9VfxXn0oeScFFdJkq2R54L E1LrAQFBQlmR6u/ezYYZM6bAtdgrdGm0mEu4Ppj6Bfj5BYj5srLuoFUqFi15t6Gan79KSXDx 4nkG0u8S4aLB9OKTmpYKMZej8aXGA3x8fIW1htqM4UZtUrGEcCn3Tla0CxcihOXG3z8Qn5tO BS0p+Qb836yPrWrpUr6E0veF/ovBF3yyGnmiCIN9OQfptmDd/mUGYgxKwkUdCbvLCRfxmWeD b+UaON5RHv/P4T/hQmy4fE0npNDXPEhHbin2KO7mVfH9cHOuBC4ObqLvvQf3YNm2+QZWGyXh orxT1C8GLUQVcM9eSCQkCxBZjpaiGMVtlA1XFrKE9W07GMjS8+DhfbTihUNa5k1wQItNIBJA yvFEZdfJjZqkSyJc0pwkenEdLWIujq6CiJGYBZWk1HhYhkSA8KUyoMubUBZFHqTiaO8iS7pT PJB+uYRiEHtPbVFVD+gyFOd4TIzLlC4r7ps65YVw9e/wKlStVF3MSfuLSYgSsV++HtVRfMNX 1BNpWrnrJwNL19Mtn4NaVXVWJsL2GpLJm+mJ4GLvitay6mgZtRfjybK57oB1RSxIAp5IsrI4 oSw7YW0O4ZLylEXhDwEZqA7pUdELfD385WlJ5ZHUHqVCBKtm1TrSpfi7kMjqjZTraKXKkNvE CT5qIvrK+mr499Cv3WC5H5Ha1MwU/L45qojvlqN/w7krp+V++ieOjk4w+6s5KDL0OHb0VGgo fPvt1/pd+ZoRYAQYAUaggBBgwlVAwBbWtErCdQxzOB06tNtg6UGDhwkxCS1Z+HHjp6IbXyMx ZufOTbDs9x/l8e4oJT/1w1lgX0H3QjRz5vsoPPH4paIhWqRGj35P9I9PuC5c6+TBeNK6TScY gkIWVK5ciYZPP3lHnEsfSsKVhm58s1EaXpJtp7xh49+eKufp2rJlHaxauUQaqnk0h3DVrFkb Jr/7mZiHRDamf/4uJCYmyPMOHPQmdOz4lLgODz8FX8/5VG6jEyXhunTpAnz7zQwU60gXfbyR cI0c9a5MGOfN/RIoz5ixYi7h6tSpB7w88H9iusjIcFz7c5UYyFvDJ0HTpi1F+4oVi2HbVkNL k7G95FavJFzUd83e3yDmRpQYRkSkYY1m0KHx0+KaXMVW71WnKdAnXH/uXixewGkAjW9ZtwO0 qN1ejKeX+jX7fhPn9EFkbsjT49C6ZCfc6ahNktGmsa3rd0b3xDaif9T1CNhwUG0hUxIucutb sfMn2X2PyBLlaAr0rS/GH47YBYfP7hHn0sfArsOgkouXIImrdv8ir03t5O5FoghEZIhM/Lpl njRMPioJF7kCbkDLkvQiT65iNF4inKYU66wRw0XPqWNwT7G33AhXTbRC9gx5XvQlUkGWR6XQ hjK31eYjqw2si2+hha4cWkHvI8FdvOlbFakg69fg7qNFOxHgBWu/EK6GMmgFcPJGz/Homuds FuGibaza9QsS5CvyjsjSKX1X6XmuxR8YpKL8YUCqy+2o/8yl7xuN24nW4jNoNZaKf5UgeKbV C4I40nd50frZUpPmcfSYcdC4cWPRRl4DPy5ahHkJD2v25UpGgBFgBBgB6yPAhMv6mBbqjErC ldvCWoSrGSbi9UCXuocPH8EuJFzZ2VmqaZQv73/88RPs2P6P3N66dUcY8voocU2ud0vQEqRf goNbCFW+nJy7cBrdBpVFSbjWr18Fa9csVzYDjR0xUkfSTp48CvPmfqFq178wh3BRvFgr3D++ p8P1a1fh1KljqumINE2bplM6JPe8D6aMVrUrCZdWDrGez/SHfv1eFmPWrPkD47n+VI1XXphL uAhzwp7K9OnvGbh6urq6w4yZc9FF1A6IhC+Yb/plTLmX3M6VhEuL1ND4IT3GgLODK5KZFPj5 n29UUyoJl9Z4+vX+jZ5vC/KlL3uuzB+lRYiIdL2GL++0dtrtW/DLP9+q1lYSrj2hmyA0Sk2C 6SWcXsapkEsikQepEMkb0W+KeMGl+LRNh/+SmuSjND9Zphatn4Wug3fkNjpREi4iZETMlIVc JethnBOVrUcxzgddLrVKYROutg27opVIF3dHhIli1pSFyNTQ3hPR6maHpOA4koMNcjM9kzH9 PxTPk8gKkRb9QrF0FVAxkUrczViZhOr3s9a1JYSL4rQ2Hlql2gIljh7ae5Igi/rfVSK09TDu SirkduuEbplUSIr/NlrJ9MsWfObJGFdGheYe+ez74vt2FRMir96j/uGC+nRv3g+CqjWkU/w7 +1r+8UBUaHw0bhwMlT098d+6UEiIj9fowVWMACPACDACBYUAE66CQraQ5s0v4cptm5279IQB A14X3dauXQHr1z22GiitRDdvJsFff/0Gp0KPqqwtpuZXEi4tK5CjkzPMmfOzmIJc5r78Yqqp 6cAcwmVyon8bZ345H9zdKkEqiodMnKCzKEnjJMJFRHLEcB2xktroGNykJYwYMUlU7d27DePA 5iubVefmEq53Jn8KtWrVEa50I0fo4qFUE+LFF7MWgBsSr7j4a/DhB2P1my2+VhKuQ2d3wpGI vQZzkRsUuUORu+C3f6ktg0rCdeTcbhSP2G0wntzfKlf0FrLd89fMlNvJNaxtw27immKUKFZJ v/Rq9SIKG9QWFph5f2PcIP6aLxWJENH1ql0/C3c+qU06Eqkia9e15Bj4c9diqRr3U0W49lHF wfAdcPTcPrlNOqnr1xi6NusjLsl6FaUXFyURLrL0fL/6c2mYfCRBhl6tXhLXB8K2o6DDfrlN eVLYhKsPJkkmoQ5yB/xB8TyUe3qtx2jh0pmIcVHkDqks/3vmbXSDcxIunORueSH2rLB2KfsU 5rklhMvYd/1ldPf0wO8GxQ4uWPul0dswN4aLXBZf7jJMzHf8/AGM09pmMHdwzZZyHKKW+67B AK5gBBgBRoARKDIEmHAVGfTWWVhJuE6cOAJnz4YaTNy7z4vg4lwRtCxc1DkwqC60adsFqvr4 YQxSJfFrtDQJKceVLq2LTdEnXNTn08+/BS9UJ5TKgwcPIA2FJFJRaCMpKRFjss6gm+MeA8EM 6q8kXFpWIuqzcNEqEQ9VUISLsCHi6FXFB8qjQqGyUG4s+oXeFOHKQDfC8WOHKIeJ87ropjke 3TWp7N+/Exb/Mleca32YS7g+mPol+PnVQEzvCRVJrTkp/o4UF5NQqfC9ycO1ulhUpyRcWlYi mpRENagfWXq++XOaah0l4dp3eouBmh51JtLihXmLcjAn0fIdP8rjlS5cy3csQmXA63KbdEJj ifhQISuTUrFQSbi0LEw05k20WFBMEcWGrdypI/tUT7FKz7Z/lU7RCpGgcosTlfhRvkwFqIz7 pqIVVyMRLrJwLFw3S/RTflCupm7/ErZQVEsk4RGtUtiE6zmM3/LB+C0iihR/pVUoiTJZcW6h UuTSzervesfgp4UiozSOvhfkBpeGFlD637UbMahMGVloebEsIVzGvuuUQNrbvZrVCZfy+2aM fFMS527N+gpYtb5vEt58ZAQYAUaAESh6BJhwFf0zyNcOlIRr8+a1KExh6HoyfeY8EU+kRbga NW4u3AKlOC1Tm9EiXAE1g6Bv3wEQFFTP6NCYmGiYj25tySjIoSxFSbgogHzYWxMxrqGZckua 58WVcGluVq/SFgmX3i3Il8WFcMkbMnGi9QKcG+EyMZ2qqagIl2oTRi60CBe5HDav215Iyivl 7ZVTpN9JhY0Yc5ebJL9yjKXnTLgsRY7HMQKMACPACFiKABMuS5ErJuPyS7i++voXcEIVKyok /kCxUokYsySV2phbqmPH7uJSi3BJ/Ro1aga16zQEN3TBoxiiiq5u4OjgKDVjgPZ+WLRwjnxN J0VJuPo9+zL07Nlf7CcDRTPCzpyA8PBQuH/vnrzHlwcNFZbB4kq4yGVv9+6t8n61Tiif2OZN a7SaLKorDAuXsY0VF8JFMTUk626qRMScNoipsXXCRd83kkc3VdIz04zGnlGMHKUBIFVGZ1Qo dEa1RYprIisylURSZ9y2wNT0VmljwmUVGHkSRoARYAQYATMQYMJlBljFsWt+CJfS7e369avw 0Yc6wQDlfSoV8UwRLuUY6bxT56fhhRdeQTni0kAJgt8ep4sFk9qLknBNeucTCAysK7ayBPNs 7du7XdqWfJTcJU0RLpKyHzdG52omD8ST+vUbw9hxH4gqa7sUTnl/hlBvJHXFcWNfUy5b4OdK wmXMJbBPmwEY82O5S6Gxm2iJVpKWdTqKZn3FOGlM9xbPyjm65q+dqZIoV7oU/o6y8UmpCdIw +TiszzvCNVDfpdCnUjV4rsMQ0Y9yeJ28eFgek9cTWyVcz7Z/RUigk0z+ovX/l9fbzVM/cqN8 CsUfKqLKI5WlW76HW+nJeRpraSdbIFzkpkjuilS0BGKoniTvSSGSCom4GEs2LjrwByPACDAC jECRIsCEq0jhz//i+SFcffq+BL16PS82sWvXFvj9N3WwOzU89/xg6N5dFyegT7gojsjLy0eM j44+r5JVF5X4IcUbUdzGmNGvAOW7kkpREq7ZKMbhjKIc9+7lwOhRgzVjzL75bqmQxDdFuOhe Jk4YKmLWpPuiYwe0Cg5CCxkVY66eohE/pBiuq1dj4JNpE6Rqo8fhKMbRBEU5qEya+CakpNw0 2tfaDUrCdQpV/naj2p9+kYUEUKVvwTq1kEBeYrj055OulcID246v1UxOLMfUaKytJFwbUNqc ciopC+XhGomiGVT0c0JVQPnyN3tNEm2no49irq1/xLk5H7ZKuLo07YXqiU3Erf6wZgaKZ9zN 822TO6EU10ZugykaecOUlkvKw0XYF2SxBcJFqo1v9n5HwHAO1SpJwVC/UBqEZkFtRfWy7Qsg McW08mDVqr4iuT39W3zlSoz+dHzNCDACjAAjUIAIMOEqQHALY+r8EK6OnbrDwIE6UhCLSYWn ffy2asv29g7w7pTpsiiGPuHq1fsF6IOiE1S0XAYplxbFj5Fr4cOHDwXhUsrOFyXhkqxXtPdf UNDiAApbKEvXrr3gxZdeE1W5Ea6tmOdq5YrFyuEwaswUaNRQ95K6dOl82Ltnm6pdefElKgqS GyaJYLz//phcExX3f24w9OihI8HkUvjbr2o3rA6YP+yFF3RWt4iIMPj+uxnK5fJ1riRcJHxA CYKVL+CuTu4wsOtbQiL8Bopa/IHiFsqSH8JVyaUyzq0TAEm4dU3k0aKXR6l4ufmgVeB1IaUd j6IXKxSiF9RHSbhiMNnymn2/S0PFkSTZSZqdysmLhwySB0uCGiR68duWuSrZd0oQ/mz7weDh UgVHP4I/UKlPn1xYi3BRImRSTaTkyz9t+Eq1D7H5PHyYk4erSa0QVId8Ssx65NweVJbcpVqB VCGfak7fxxKozBghJO2lDi4o0f8apgmgYsxlUBJZoT7G1CepzVrFFggX3eubvSaK5NSkDvnb 1nmQceexlDzlexvcbYTIJ0Y50eai6qWU000Lpwr29pjo+Hs5IfvMGdMxWXrBElutfXAdI8AI MAJPKgJMuGz8yeeHcFX19YOpqHhHL4tUQkOPQVjYCbgWGwO+1fxF7Ja3t6+MkD7hqt8gGMaO fV+0kzz68ROH4VzEGbh1KwkCAoLQrS5YHKnDtWtX4OOP1ISuKAmX0kpEkvbHjx+CM2eOC0XG Jk1CoGXLtrI6Y26Ei5QZ9+/fAWcxQbInWvzInZDun2JTyKI3bdpEA8EQGVQ8GT/hI6iLsXJU aC8RiOHdu9nimj5ofmXSZ0/PKkiEZ4ADEmIispRr68Txg2K/NQICISSkPRDZpbJ69TL4Z+Nf 4twaH0rCRfPRS/Ths7uRLOaAn1dNoCS5FKtDRevlPD+Ei+aU3NvonEjXmejjgvC5O1eCxjVD oFwZndKkVgJeJeGi8Rdiw8V4GkOS7PS/MnZlqQnzHi2Bq4mXxbn0obTEUN6lwxF7ICU9Cdxd PPG+6wjpdOqbilacJegapySDVG8twkXkpna1RjQl3MS8TVGo8PcQyZdUbtyKB0oaLRVvd1/w 8agmXYojEUMiSlTIgpKaqbaShl7E9A7/WrLIujcIX+5JvZFe7s9EHxPS7nb470aVSr7QMKCF cMOkubQsj8P6TMZ23XOh/GaX4y6iO2c8VHSqBH6eAVC3emNBkknCfyEqS0rr0nz5LZRKwM5O 9++bNFcw5hQjRcWMO2kQfvm4VC2OSSk34BImMaai/K4XtkohrU9JwFvW6UCnqIqZDifPH4TU 26nggM+jMZJgyQ2T1Cx3YGJkU6VRo8YwZuw40SUrKxtGjhhmqju3MQKMACPACFgZASZcVga0 sKfLD+GivQ5+ZRi0b6/LbaS198jIcFmBUJ9wUf8xSLgaIPEyVYgUkBXp0MHdqm5FSbi8vLxh 8nvTBWlRberfixSUtb+XkwMeHp4mZeHJYncfCRGRH62yceNq+Hu12pKi349I0gQkXSRDr1XI 7XH4WwNUTd2e6g3PoaWLZPuNlaioSPhq9rQ850UzNo+yXvkSSi/NlVy8lM3yeQa6jy3F5L73 kIgpS34JV0VHNyQub8gv+Mq5pfOL6Cq4EV0G9YuScJnaO+XPojxa+oWS0b6Ia1PeJWPlHkqn b8SxSsIj9bUW4XLFeCeycpELpFY5jYSI8l1JpUWddhBSt5N0mafjjxtmq6TvyZ2zGxK9kiWM f9/Iarhu/x+ClCkXUcYaKev1z7UIun4fc69H9HtPJtF5GRsREwpbj60VXZXf9aIgXPRD2Ito sZVcMrX2T0R5+fZFuUrq9+7dF/r26yemiI6Ogs8/U+fH05qb6xgBRoARYASshwATLuthWSQz 5YVwffb5d0BWkUSUZZ/y7gjVPkkevXefl4Q1q3x53a/Q9Mt8YmICnD8fDvTS/vrro8UYLWsJ JSfu1esFaIEWIX1peZqHLFukknfkiGGi2LwQrvkLlgvRjXPnwmD2/32s2rv+xcfTvgIfn2pA ZGkSxlXlVih5MMWo+fvXkrtmZWVBbOxl2LJlLbpLDgBftAKS0t87k9S/CEuJjykP15Jf5gER IIppk0gTzbN589+wcUPerEu0F4qp86pSVVaNlDZFpG7UyEHSpXxsHNwc+vUbiHF03rLSGzWS QMmRw/tgHSaqVsbMyQPzcaJ8CaWXemeHitCgRjOQ5L7pmZOK37Zja1Qv7NKS+SVcNI99OQfh HkjJeCWLFNUTyaNkwWT10ipKwrVi54/QvHY72SpF/ckl68ylY7D/9Daj7ll2peygRZ32Iq8U uXVJhe77MlpGjp7bq5kfjPpZi3DRXJQYt3X9LujC6AXlMd5HWUJR0GMPCntIpVlQa+zbVbrM 05EsTXeyb6v6VsFcW+0bdxduk5KyIHUg68sZjGs7cf6QUdxqV2sIzWq3AVfHSqo56SLt9i04 HnnAaN4xgwFmVLyF1jXJ6pmXYUprkfK7boxw9UdBkaoe/iKv2KL1s40uQZbfniHPi3Yt66ux gUTym9dpC/WrNxXuhVK/rJwsiLx6Gg6F7RT56qR6Y8dhbw2HFi10cZ+7du6AX39daqwr1zMC jAAjwAgUAAJMuAoAVFuckoiXX/UAEUt09colSEiIM/s2qmDyYG8kPFRuo4IeiUBkIiEp7oXi p+jeyS0yEond/fuP3bPM2TvFvAXVrg8Z6WkYH6EWZDBnHnP7uri4QnX/AAyIt4MkJMqkOGnp PeS2tvIldHfoP3Aq6ii+0JYDNycP4ZqahIH72RhzUljFGWXFy+L6aZm3VLFkWusrCdevGIN1 E90BHSs4IQlwF2NJtdBUHIz+nBSf5ITuk3S/qbi+NV3h9NcqTtdENN3F8y4J6eiWR655RDjz UsriWBcHN0GCKDaJLDTZOdrfFxKO6PxvTF1e5qY+cUlXNJNp53V8ce5Hrp2O5Z0FucvMyjBr qx9+9DH+IFRdjPnxx0Vw8MB+s8ZzZ0aAEWAEGIH8IcCEK3/48WhG4IlCQEm4jP3qX1wBUROu eUi4EovrVnlfiADFApLAhTnlyo1o+Hvvr+YMeSL6fvf9D2BvX0HEg06cMB7S0tKeiPvmm2QE GAFGoLggwISruDwJ3gcjYAMIMOGygYf0H9kiuUq2b9TdrLtJTr0Bx88fMGvMf71zlSre8Nnn 08VtxsfHw/tT3v2v3zLfHyPACDACxQ4BJlzF7pHwhhiB4osAE67i+2x4Z4yAFgJt2rbDONw3 RNPRo0dg/g/ztLpxHSPACDACjEABIsCEqwDB5akZgf8aApTrikQjrNOZnwAAIy9JREFUqJA4 RUEnqbUmfpRnK8Cntphyx4kNIvbImvPzXIxAcUTA2dkZKOkxleSbyZCAVi4ujAAjwAgwAoWL ABOuwsWbV2MEGAFGgBFgBBgBRoARYAQYgScIASZcT9DD5ltlBBgBRoARYAQYAUaAEWAEGIHC RYAJV+HizasxAowAI8AIMAKMACPACDACjMAThAATrifoYfOtMgKMACPACDACjAAjwAgwAoxA 4SLAhKtw8ebVGAFGgBFgBBgBRoARYAQYAUbgCUKACdcT9LD5VhkBRoARYAQYAUaAEWAEGAFG oHARYMJVuHjzaowAI8AIMAKMACPACDACjAAj8AQhwITrCXrYfKuMACPACDACjAAjwAgwAowA I1C4CDDhKly8eTVGgBFgBBgBRoARYAQYAUaAEXiCEGDC9QQ9bL5VRoARYAQYAUaAEWAEGAFG gBEoXASYcBUu3rwaI8AIMAKMACPACDACjAAjwAg8QQgw4XqCHjbfKiPACDACjAAjwAgwAowA I8AIFC4CTLgKF29ejRFgBBgBRoARYAQYAUaAEWAEniAEmHA9QQ+bb5URYAQYAUaAEWAEGAFG gBFgBAoXASZchYs3r8YIMAKMACPACDACjAAjwAgwAk8QAky4nqCHzbfKCDACjAAjwAgwAowA I8AIMAKFiwATrsLFm1djBBgBRoARYAQYAUaAEWAEGIEnCAEmXE/Qw+ZbZQQYAUaAEWAEGAFG gBFgBBiBwkWACVfh4s2rMQKMACPACDACjAAjwAgwAozAE4QAEy4bf9j29g7QvEUbKIH/Xbl6 CaKjzhvcUUhIeyhfvgJk382Cgwd2G7QXVYWfXw3w968llj958gikpt7K81Y6dOwOJUuUyHN/ 6njkyD64fTvTrDHGOjdo2ATc3Twg514O7N+3w1g3g/qmzVqBk6OzQT1VpGekwfFjBzXbuJIR YAQKF4HSdmWgmmeA+Lc1KTUOUjNT8rSBEvjvUnWvQChVspRm/1vpiXAzPUmzjSsZAUaAEWAE /psIMOGy8eca0qoDvPHGaHEXmzevhT9XLTW4o+kz54FHpcpw81YyTJ40zKC9qCpef2MMtGrV Xiw/a9aHcD7ybJ63smDhSihVSvuFxtgkH04dC3Fx14w1m1U/7ZOvwdu7KmRkpsP4sUPyPHb2 nJ/A2clFs39MTBR89ulkzTauLD4I2JUqDV2a9sIXajuITbwEZ6KPF5/N5bITj4pe0Cyoreh1 OuoIXEu6ksuI4tNc2Hv3rxIIvVsPEADsCd0EoYhXXoqrozu80n2U0a5Hzu2BQ+G7jLZzAyPA CDACjMB/DwEmXDb+TJ9UwjV/wXKwsytt1tMr7oTr8uUo+PwzJlxmPdQi6GxfzgGG9pooVj4b Ewrbjq0tgl1YtmSdao2gW/O+YvDWo2sg4sopyyYqglGFvXdLCVdFRzd4tbvuRzAtmI6c242E a7dWE9cxAowAI8AI/EcRYMJl4w/2SSVcNQICoWzZcqqn99qQkeBa0Q0yMzNg4cI5qja6iLp4 DnJycgzqLamw1MIVGFgXStnZqZYcNWoylClTFphwqWApthdMuIrm0dgK4SJXQlenSiqQ3Jw8 oHuLZ0UdEy4VNHzBCDACjMATgQATLht/zE8q4dJ6bJ989g1U8fKBtPRUmDD+Da0uVquzlHBp bWDuvN8FeWTCpYVO8atjwlU0z8RWCJcWOl5uPvBip/+JJiZcWghxHSPACDAC/20EmHDZ+PO1 FuHyr1ELOnfuCZUre4IjxhjdQzGItNQUYXXZ9M9qk2ITlSt7wVPd+4Cnpzc44diSGFt1Nzsb UlAEI/TEIdhnRFRCP4bLxcUV6tULBv8aNeHB/QeQlHQDdu3aBOFhoXl6SpYQLju0NnXt1gvq 1m0ETs4uUK5cechIT4NbGO+2d89WCDOytkS4SOhi6vtjoMfT/aBOnQbggIIYmVgXF3cdNqxf CQkJcbnu3VLCRXvv+cxzQnjE3d0DHj16BNevxwLFgh09uh9uJifmunZ+Oni7V4M61RuBi0NF cCjnBLezMyDtdgqEXzoJ15Ovmpy6XOly0LBmc3B3rgzO9hUh534OihLchJiEaIi6FqE51sPF E4IDW4m2M1HHcMxdqOEdJIQNyuJ8KRk34fzVcLh4zXQsoLuzBzQIaI77dgX7svYAKHJw5+5t SMXxp6OOQnKaGje6v5Z1O8p7otitmj51xDWNSUi5LrdJJxdwH5fiL0iX8pEEFWpXawg1qgSB YwUnoH1nZKdDGgoy0D3dSNH+vrSs20HsNyMrHY5G7EVRhlr4v5rg5eoDmXczICk1AY6d2wd3 sm/La9EJucXVqlpXrqM1vd39xPX15BjIuJMut0knFF9Ez1G/mIub/nhzr625d3rWjWu1FJYn x/JOcP/BPUi/nQbXMYbtdPRRvL5vsD2lS+Hu0H8g7mYsNMHvnxtar0qWKAW3MpLhQuxZ/F+4 wVj9ivwQLlcnd2gY0AL37g6099TMW5Bw6xpcvXEZ4nL5O5P20bJlCHTp2hUqVnSFixcvYKzv KkhOZuEOCR8+MgKMACNQ0Agw4SpohAt4fmsQrv7PDYZuSDqMiVAQcfph3iy4FG34AtmseWt4 9dXhgqgYu9WzZ0/Dd99Oh/v31S81SsJ16tRxaNSoqcEUD/BFaN26VbBxw58GbfoV5hKuKih6 MXLkZCSZXvpTiWsiMEQWly75waBdIlypaSlwLiIMQkLaGfRJz0iHX3761ihpkwZYQriqVw+A 14aMEsId0jzKY8KNOJj73UyIjzckA8p+lpwTaejStDeQxYHO9QvhRrFBxmKbiCh0btILHPDl UatcRqKy9ejfkJWTpWpWvgAfjdwLjWuGQGkUsNAv4ZdPwvbj6/SrxXWTWq2gdYMu+MJcUrP9 4aOHsP/0Vjh58bDcrnxZlitzOTkQtg2ORR5Q9XIo7wh92w5EkumpqpcuCLfj5/fDgTBD1cuX Ov8PPJFcEamNuh4JDWs0k4bJxzvZmbB2/zIVaWteuw20qtdF7pOXk+U7FuELvfp7YwlueVnL VB/r7T0EWtXvYlQ1MB3J5eq9vwoio9yP8vt2OGKX+L4RQdYvZ6KPwc6TG/WrVdfK75A5Fi7C PaReRyChFv1C3xcigqdx/dzKl7Nmg7u7u9xty5YtsGL5MvmaTxgBRoARYAQKFgEmXAWLb4HP nl/C1aJlWxg6dJzYJ/0fOFmV4vAlvaKLC1St6gcl/5U2jo2NgWkfTzC4n9lfoeoeWoaokCvf peiLkIEWHlLw8/X1h9KldS8KmzevwV9Vf1WNVxIuashEyfbIc2FCaj0gIEgoK1L93bvZMGPG FLgWa1pRzVzC9cHUL8DPL4CWgKysO2iVikVL3m2o5uevUhJcvHiegfS7RLho7MOHDyA1LRVi LkfjS40H+Pj4Im66F3pjuNE4qVhCuJR7JyvahQsRaOF6iNauQHxu1cTUSck34P9mfWx1S1eL Om0hpG5nafuodBeDlpVMqOLuqyJR+89sQwKhJh0VytnD4G4joXzZCmJ8xp00YZ0hAZQqblXl F0st0qR8AX6AmFMhaxhZfUjBztfDX9TRx/qDyyEaiYmyUBzNwG5vyWQrOe2G2DuRLG83X5yj iiCQdL1y508y6aiElrWeLZ+XpypRsgRa5VzFNT379Nupcpt0cjhiD0RePSNdimP/Dq9C1UrV xTmRyUS0ZmWhZY0shY4VnOW+65A06VvHJMJFnR48vC+scVdQIZFexGt615HxvIFEafnOH4W1 k/o28G8CwfjSLpXSpcuAfTlHcXn3XjZk6VnEHsEjWLPvd5WFy1LcpDUtPVpj7/SdeLb9K2IL 9O8bSbInojWQ8Kbvm/TvW9zNq/jMf1ZtVf19u4/fjZIQE39R/J154lhyLZXK2v2/w2VsM1Ys IVzVKvsjQR8svpP0zM+jJS0NrcAO5Z0h0LcBlEHZeiq7kOyZIl2Ojk4w+6s5KDJkJ2/vVGgo fPvt1/I1nzACjAAjwAgULAJMuAoW3wKfXUm4jmEOp0OHdhusOWjwMCEmoSULP278VHTjayTG 7Ny5CZb9/qM83h2l5Kd+OAvsK9iLupkz30fhiccvsQ3RIjV69HuiLT7hunCtkwfjSes2nWAI CllQuXIlGj795B1xLn0oCVcauvHNRml4Sbad8oaNf3uqnKdry5Z1sGrlEmmo5tEcwlWzZm2Y /O5nYh4S2Zj++buQmJggzztw0JvQseNT4jo8/BR8PedTuY1OlITr0qUL8O03M1CsQ+ee5Y2E a+Sod2XCOG/ul0B5xowVcwlXp0494OWB/xPTRUaG49qfq8RA3ho+CZo2bSnaV6xYDNu2rje2 tNn1JAgwvO+74kWfSM/6A3+gG2CUPE8QvghK4gBZd+/AgnVfym100jH4abTONBd159AKtuPE Btmdi1ym+uELJr0M08vxsu3zkYzdkMcrX4CpctWuX9B18TEJJ0tAi9q6NANkJSNrj7I0C2oD rdHSQYXcyHad/EfZDG3Q8tU0sI2oIwvawbCdqnbpwpIYLqVU+G0kp79tnYdk6440JVoxOuDe O4hrclH757DaoqskXJfjzyOhXCmIPg0gy9mALm/KROqP7QtVVi4x6b8flsRBWQs35T4sObdk 70+3fA5dKuuJ5chKdfjsHnnp8mXKw2CUb69AbqVYlmz+TrilSh30v29r9v4GMTd033Wy7JKV sUPjp0X3Kzei4W+0khkrlhCugV2HQSUXL/GcV+3+BeJvXpOnp+/TS52HQpnSZTGnVyL8umWe 3KZ1MnrMOGjcuLFoIq+BHxctwryEj624WmO4jhFgBBgBRsB6CDDhsh6WRTKTknDltgEtwtUM E/F6oEvdw4ePYBcSruxstRuX8uX9jz9+gh3bH7+ktm7dEYa8PkosS653S9ASpF+Cg1sIVb6c nLtwGt0GlUVJuNavXwVr1yxXNgONHTHyHVF38uRRmDf3C1W7/oU5hIvixVrh/skj7vq1q3Dq 1DHVdESapk2bI+rIPe+DKWqZZyXh0soh1vOZ/tCv38ti/Jo1f2A8l/oFWrmYuYSLMCfsqUyf /p6Bq6erqzvMmDkXXUTtgEj4gvmzlcvl69wbrVjPd3xdzBF26bggTPoTSi+KVL908/ci1kXq 82KnN8ALrQPZaOH5eeMcEbsltdGxXvVg4a5I5+QWSJYuqShfgClOa+OhVVKTOBIZHNp7ElB8 WArG1yzBtZVFSaiUL89SH0p064lWLipEiihGR6tYQrjoxZjivihBOb0gK1+eaQ0iTf97RmdB Tk5LQEI2X7W0knDpY0odW9Rph1bHTmKMKbl3S0iLtXBT3ZAFF5bs3aeSn4h9IwJ/Di2OZJFU FnJtrY9WQCpEcpXxWMrvW9T1CNiAJFe/DOkxBpwxPozcEn/+5xv9ZvnaXMJlh3+7I/pNEdbY 87FhsOnwX/Jc0km7Rk9BMLrV0r0tWj8L4xDvSE2ax8aNg6Gypyf+WxcKCfHxmn24khFgBBgB RqBgEGDCVTC4Ftqs+SVcuW20c5eeMGCA7gV77doVsH7d45cOpZXo5s0k+Ouv3+BU6FGVtcXU /ErCpWUFcnRyhjlzdG4+5DL35RdTTU0H5hAukxP92zjzy/ng7lYJUlE8ZOIEnUVJGicRLiKS I4briJXURsfgJi1hxIhJomrv3m0YB6Z+gVb2NZdwvTP5U6hVq45wtRw5YqByKvn8i1kLwA2J V1z8Nfjwg7FyfX5P6OWUXlKp6BMiaW56uaz8L3Eh1zily92w3u8I97d4dOFaoefCReNJRGNQ t+FiqhMXDsI+jKeSivIF+NDZnXAExSP0y8to6SHXwKwctK6tVVvXyCLRMbinGBKTcBH2ntpi lFTpz6u8toRwKccbO38VrS0V0XKRficVyaja3UsiXCQUMu/vGQZTBHjXhmdavSjq95/Ziq6c Bw36UIUlpMVauGluyIxKS/ae2/Rk/SIrGJWdJ9bDmUsn5CF5+b71azcYqlWuIYjct3+preDy RHhiLuGivx+yWlI5GL4DjqIgin6p69cYujbrI6o3HFyBsX3n9LvwNSPACDACjEAxQYAJVzF5 EJZuQ0m4Tpw4AmfPhhpM1bvPi+DiXBG0LFzUOTCoLrRp2wWq+vhhDFIlETMgTUKxSBT3QUWf cFHdp59/C16oTiiVBw8eQBoKSaSi0EZSUiLGZJ1BN8c9BoIZ1F9JuLSsRNRn4aJVIh6qoAgX YUPE0auKD5RHhUJlodxY5DpkinBloBvh+LFDlMPEeV100xyP7ppU9u/fCYt/mSvOtT7MJVwf TP0S/PxqIKb3hIqk1pwUf0eKi0moVPjeZB2B0epnbl2DGk2hU/AzYtiGQyuNKgoam3d0/w9Q vMAO3RAvilgh/X5KS49+HJfyBXhP6CYIjTqiPxytb0NETJQW4SKFvlcwIa1SaIPUETPQOkEk h2J7LsddkGO3DCb/tyI/hIvIS1WMzamMMWdlS6u/b2Rho++bKcJFohmL1htaLP0qB0DfdoPE Dq1NuKyFmzE881pvKeGiGLR6NYJRdMQbCS0qDKKVUSol6N+3fwUpTBEuY9+33q0HCCVIsjJ9 8+c0aVqDo7mEy9ejOsaevSrmIYtnZlaGwZzly1SAynhPVLagyMy5K6cN+nAFI8AIMAKMQPFA gAlX8XgOFu9CSbg2b16LwhRLDeaaPnOeiCfSIlyNGjcXboFSnJbBYEWFFuEKqBkEffsOgKCg eoqe6tOYmGiYj25tySjIoSxFSbgogHzYWxMxrqGZckua58WVcGluVq+SCZcaECImrep3ElYw dcvjq1NI5HYjoTNWLCFcRKS6krIjWiVyK8WNcNF+rYFbbvedW7slhIuITi8kRVKclqk1iivh MrVnqY0Jl4QEHxkBRoARKJ4IMOEqns8lz7vKL+H66utfwAlVrKiQ+APFSiVizJJUamNuqY4d u4tLLcIl9WvUqBnUrtMQ3NAFj2KIKrq6gaODo9SMAdr7YdFCXUyUVFmUhKvfsy9Dz579xVYy UDQj7MwJCA8Phfv37knbg5cHDRWWweJKuCgeZffuxy538sYVJ5RPbPOmNYqa/J3asoVLeefk glfZtYqI73Gyd8Gjm8iJJfWh+DBj+bwsIVyNMY9S+8Y9xPRkpTp/NUyo2klqi9TQo8WzKBji UuwsXBImdMwPbsp5LDm3hHD975m3ZeVMErYg3CmPlVR80drYsk4HcVlcCddVVKOMU4jDSHtX HiNiTqtcd5VtfM4IMAKMACNQ9Agw4Sr6Z5CvHeSHcCnd3q5fvwoffTjeYC9KRTxThMtgIFZ0 6vw0vPDCKyhHXBooQfDb43SxYFLfoiRck975BAID64qtLME8W/v2bpe2JR8ld0lThIuk7MeN 0bn+yAPxpH79xjB23AeiytouhVPenyHUG0ldcdzY15TLFvi5knBRID8F9JtTRqIQALnOXb1x CXMfGVpjify8/vQ4MeUZFOXYiSqGUsmvS6E0j9aR5NWbo9x986B2ollLlEMaZwnhklzPaI51 qOx4Ke68NJ18lMRGiqOFS96k3ok5uOkNNfvSXMJFibJf7vqWWIcSBS/f8aPBmjV96kLPEJ3k vynCte/0Fjhx4ZDB+D5tBmAC6kAhXGFNl0KfStXguQ46V+W9pzar8sIZbIIrGAFGgBFgBIo9 Aky4iv0jMr3B/BCuPn1fgl69dC8bu3Ztgd9/W2iw2HPPD4bu3fuKen3CRXFEXl4+oi06+rxK Vl2aSIo3ohiHMaNfEfmupLaiJFyzUYzDGUU57t3LgdGjBmvGmH3z3VIhiW+KcNG9TJwwVMSs SfdFxw5oFRyEFjIqxlw9RSN+SDFcV6/GwCfTJkjVRo/DUYyjCYpyUJk08U1ISblptK+1Gyhp cZ82OqEOY8IVJAsvSXH/tXsxSrdflbcx+KkRQDE1qZhPaPGm7+R66UQZi0SCGSScIZX8Ei7K 1UVxL4C5pq4g4dMvlJOJJO8ppsfYCzqNsYRwSZaWew/uoejFdPGCrr/+m6iwSK5vxY1wWQs3 /fs199pcwqUU+zCWbLhJrRBo21CX/sEU4TLmZiqLtGikQFDenzKG61jkPs3k1sr+lK/uzV6T RJVWCgNl37yeV63qK5Lb07/FV67E5HUY92MEGAFGgBGwAgJMuKwAYlFOkR/C1bFTdxg4UEcK YjGp8LSP31bdir29A7w7ZbosiqFPuHr1fgH6oOgEFS2XQcqlRfFj5Fr48OFDQbiUsvNFSbgk 6xXt/RcUtDiAwhbK0rVrL3jxpddEVW6EayvmuVq5YrFyOIwaMwUaNWwi6pYunQ9792xTtSsv vkRFQXLDJBGM998fk2ui4v7PDYYePXQkmFwKf/t1gXI6JHtPoWVRZ3WLiAiD778zVLVTDTDj Qkk2SAr7t60/qKTdSWDhNZTKJmEMcpf7Yc1MzLP12E2zV6uXoIZ3kFhRKzmx0hKkn0w2v4Sr R8v+EFi1vlhbS/BDqQxnTEWRBpOFbkTf94TARWJqPCzbpsZfLKD38TLmVPLAnEpU9O+L6gJ9 66NLYX86LVDCVQNdKXv9q2ZojESITSg+rIWbYkqLTs3dewDK8D8T8oJYS+t5kvT6C5imQHou pggXuYGSHP/de3flvVPeuIFoQaPvOiWc/mPHIrlN/4T+Lt7oqfv31RSZV46TCPgdTI7925a5 Ktl3+nHg2faDce9VcMgjoNxrKRnGf3ipYG+PiY6/lxOyz5wxHZOln1cux+eMACPACDACBYgA E64CBLcwps4P4arq6wdTUfGO/s+bSmjoMQgLOwHXYmPAt5q/iN3y9vaVb0OfcNVvEAxjx74v 2kke/fiJw3Au4gzcupUEAQFB6FYXLI7U4dq1K/DxR2pCV5SES2klIkn748cPwZkzx4UiY5Mm IdCyZVtZnTE3wkXKjPv374CzmCDZEy1+5E5I909CCVlZdzCf10QDwRAZVDwZP+EjqIuxclRo LxGI4d272eKaPmh+ZdJnT88qSIRngAMSYiKylGvrxPGDYr81AgIhJKQ9ENmlsnr1Mvhn41/i 3FoffdsOAj/PADEd5ZQ6gRLkt7PSUX2vBsb4BIl4KGrUUiKsSupr7V4R2BARI6XBG7fiwA5f Wmv7NRQS2zSWlNmWbV+kypuUX8LVNLA1JjfuStOLvElnY0KFayNhWNXDD4KqNUBZek/RfuLC AZSkN06SX+sxWr5Pig2KS44R46SPi9fOwa30ZOkSc4v1whxjOgKeii/GpMB4Of6isDhQfq5G NVvKankFaeFSumwS/uQ6SdZGZTkeeVCQZanOmrhJc1pyNHfvRHKG9Bgr//sWgc876nokPpdE cMPn3CyoNSoX6iz0tB9ThIvaiVwfPrsbfxjJAT+09JI7IiXppnLk3B44FL5LnBv7kKyc1E4J u2MxNuvRo4dy99TMVBFjJlUoE3lTXrnDEXsgJT0J3NFVkr4z1b1qia70fVqy5XtNq6k0V6NG jWHMWJ2rblZWNowcMUxq4iMjwAgwAoxAISDAhKsQQC7IJfJDuGhfg18ZBu3bdzO6xcjIcFmB UJ9w0aAxSLgaIPEyVeiFlqxIhw7uVnUrSsLl5eUNk9+bLkiLalP/XqSgrP29nBzw8PA0KQtP Frv7SIiI/GiVjRtXw9+rf9dqkuuIJE1A0kUy9FqF3B6HvzVA1dTtqd7wHFq6SLbfWImKioSv Zk/Lc140Y/Po19OL7IAuw0wqv1Hi4D+2L9CUs+6A4hGNUETCWCGp9jX7fkMS89gVkfrml3BR 8mHKZ+WK0uCmSiaSx+VordCS4pbGKd3bpDrlUT+Jrj26iA3sOhwqlNP+npC18B7etxvmIStI wkV77IJqiZRg2lj5Yc0MlSXHmrgZWzOv9ebuXUlatNaIjouEGlV0FldThIsID+VI0yoZmFJg 6ZZ54vlptUt1Qb4NgNxtjRUSx1i953FcIyXypkThlFfOWCEX1Y2YgysmIcpYF1Hfu3df6Nuv nziPjo6Czz8znjPM5ETcyAgwAowAI2ARAky4LIKt+AzKC+H67PPvgKwiiSjLPuXdEarNkzx6 7z4vCWtW+fK6vEDk45+YmADnz4cDvbS//vpoMUbLWkLJiXv1egFaoEVIX1qe5iHLFqnkHTli mLgzL4Rr/oLlQnTj3LkwmP1/H6v2rn/x8bSvwMenGhBZmoRxVbkVSh5MMWr+/rpfiql/VlYW xMZehi1b1qK75ADwRSsgKf29M0n9i7CU+JjycC35ZR4QAaKYNok00TybN/8NGzfkzbpEe6GY Oq8qVWXVSGn/ROpGjRwkXcrHxsHNoV+/gRhH5y0sRlIDCZQcObwP1mGiarKwFUQhAtEarUW1 fOoBuWZJhdwISUjjYNgOk4SFXPtC6nYAZwdXee/08ngt8bKQZE9DAqJf8kK4+rd/Ba1V/mAs XxVZJFriurS+ct+0Fu09GpPHHjq7y6R7lrQvsnA0RSsJvYiXQTdDZdFylyQXtA6NngZSxpNK dk4WxN+MxSTOezCWqJvIIaYV3yYlPjZ2X1Ur+UH/Dq+JafecwhxlF49ISxgcyaJN1h0iAM72 FWULEHWkv9l5SLiI/CmLNXFTzmvuubl7JyszKUQ2r9MeypV5/O/bzfQbQEm545KuAllsqWw7 vhbOXn6cx1D/+1a+vL1QaZQIO2FFJGnbsTUmv+vKe6QYyOa120JFjGMsV7qcsknTIkzf0Ra4 94Y1mgMRX6nQ2pdx/0fP7c01bxyNGfbWcGjRQhf3uWvnDvj118fETpqTj4wAI8AIMAIFhwAT roLD1qZmJuLlVz1AxBJdvXIJEhLizN5/FUwe7I2Eh8ptVNAjEYhMJCTFvVD8FN07uUVGIrG7 f/++RVummLeg2vUhIz0N4yMiLJrDkkEuLq5Q3T8A3dPsIAmJMilOWnoP5q5fskRJcHF0BYdy jkhybkMKuqeRXH1eCxEVIl3k3kZy3fQiWRiFXsSdUIKdrHWAiXCJyKRlpsBDhYtXQe2DXrTd nD2ACGYSJlsurHu2xv2Yi1unJs8IkZG8rp2F4hPbj6/La/c896N9u+D3zKG8E5Ab7B38rlpa Kjq6QXkUN7mVlgjZ9x67/lo6X17H0f6d8AcDWpP+VnIU8WS5zfHhRx/jD0LVRbcff1wEBw/s z20ItzMCjAAjwAhYEQEmXFYEk6diBBgBRoAReIzAkB5jBKF+XGP6LOf+XVRxnGG6E7eajcB3 3/8A9vYVRDzoxAnjIS0tzew5eAAjwAgwAoyA5Qgw4bIcOx7JCDACjAAjYAKBdugmaSxuTWvY /Qf3C8TCpbXWk1JXpYo3fPb5dHG78fHx8P6Ud5+UW+f7ZAQYAUag2CDAhKvYPAreCCPACDAC jAAjYF0E2rRth3G4b4hJjx49AvN/mGfdBXg2RoARYAQYgVwRYMKVK0TcgRFgBBgBRoARsE0E nJ2dgZIeU0m+mQwJaOXiwggwAowAI1C4CDDhKly8eTVGgBFgBBgBRoARYAQYAUaAEXiCEGDC 9QQ9bL5VRoARYAQYAUaAEWAEGAFGgBEoXASYcBUu3rwaI8AIMAKMACPACDACjAAjwAg8QQgw 4XqCHjbfKiPACDACjAAjwAgwAowAI8AIFC4CTLgKF29ejRFgBBgBRoARYAT+v/06pgEAAEAY 5t81LnhWBYRyQYAAAQIhAYcrNLaqBAgQIECAAAECBAh8BRyur7c0AgQIECBAgAABAgRCAg5X aGxVCRAgQIAAAQIECBD4CjhcX29pBAgQIECAAAECBAiEBByu0NiqEiBAgAABAgQIECDwFXC4 vt7SCBAgQIAAAQIECBAICThcobFVJUCAAAECBAgQIEDgK+Bwfb2lESBAgAABAgQIECAQEnC4 QmOrSoAAAQIECBAgQIDAV8Dh+npLI0CAAAECBAgQIEAgJOBwhcZWlQABAgQIECBAgACBr4DD 9fWWRoAAAQIECBAgQIBASMDhCo2tKgECBAgQIECAAAECXwGH6+stjQABAgQIECBAgACBkIDD FRpbVQIECBAgQIAAAQIEvgIO19dbGgECBAgQIECAAAECIYEBYKeYm26YJeoAAAAASUVORK5C YII= --8b4cf2e8af174e21b5ab7f1308d4211a-- --4f3f88f9683c4f46b75117d2978836df--