Newsgroups: php.internals Path: news.php.net Xref: news.php.net php.internals:124144 X-Original-To: internals@lists.php.net Delivered-To: internals@lists.php.net Received: from php-smtp4.php.net (php-smtp4.php.net [45.112.84.5]) by qa.php.net (Postfix) with ESMTPS id 0FCFE1A009C for ; Mon, 1 Jul 2024 16:01:25 +0000 (UTC) DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/simple; d=php.net; s=mail; t=1719849765; bh=gPrqzNphhsqd9EtMddUf1qnQfqHNaInxIwXuUTkUMFY=; h=From:Subject:Date:In-Reply-To:Cc:To:References:From; b=QArGkfZZQJ4dsF1lKEs2NitHILzTGx3AAzyMXFIRCB3xjSbkHnLcdasxFWYXd0zhn 3Yt51xsrYEhXNpKTsLLRIjraAVMeP9lVxx+ESg+WGrdGTPv1kYNsHE/Xq95miXBjWG rrXFzO/XTzE3PFxaHyty/y6lNGsA5HZr9HVVas6Myr3Tch2Bu6Rgd/eaCpM5DyPugD 4LsXX091kluXFiMyimW091EpB9Wv7wbmXPD7dxnoMY8RJkep+gnliv0hhfuu1mUB8P WApz8qAbwpm3B+qNnu8a5s03Ya5NqxOTwe8YL3C4qAA7QMh2ut412aESa8j5rxDJQe sYkFas9ID1qvw== Received: from php-smtp4.php.net (localhost [127.0.0.1]) by php-smtp4.php.net (Postfix) with ESMTP id CA88918007F for ; Mon, 1 Jul 2024 16:02:41 +0000 (UTC) X-Spam-Checker-Version: SpamAssassin 4.0.0 (2022-12-13) on php-smtp4.php.net X-Spam-Level: X-Spam-Status: No, score=0.6 required=5.0 tests=BAYES_50,DKIM_SIGNED, DKIM_VALID,DKIM_VALID_AU,DKIM_VALID_EF,DMARC_MISSING,HTML_MESSAGE, RCVD_IN_DNSWL_NONE,RCVD_IN_MSPIKE_H2,SPF_HELO_NONE,SPF_PASS, T_SCC_BODY_TEXT_LINE autolearn=no autolearn_force=no version=4.0.0 X-Spam-Virus: Error (Cannot connect to unix socket '/var/run/clamav/clamd.ctl': connect: Connection refused) X-Envelope-From: Received: from mail-io1-f51.google.com (mail-io1-f51.google.com [209.85.166.51]) (using TLSv1.3 with cipher TLS_AES_256_GCM_SHA384 (256/256 bits) key-exchange X25519 server-signature RSA-PSS (2048 bits) server-digest SHA256) (No client certificate requested) by php-smtp4.php.net (Postfix) with ESMTPS for ; Mon, 1 Jul 2024 16:02:38 +0000 (UTC) Received: by mail-io1-f51.google.com with SMTP id ca18e2360f4ac-7f3d59ff826so113307139f.3 for ; Mon, 01 Jul 2024 09:01:18 -0700 (PDT) DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=miles.systems; s=google; t=1719849676; x=1720454476; darn=lists.php.net; h=references:to:cc:in-reply-to:date:subject:mime-version:message-id :from:from:to:cc:subject:date:message-id:reply-to; bh=Ss+2ICQzFRKjtOjds8Cw+zYfVtmOqmn+BS9u7U7dT7o=; b=W4qDLLn2CLmXxIuatvU0sbWaEDq1qI/6EDGj5kTYuhA77rHV4D8PZYVcgoKef3ync7 ANKkV8O6ROttx6XZajtjCdhmM/V495DoS83yzPf92mosPPu2WZ+67qWC+NQBoQqQk6PT 0RetWvIT9BBdYWBP7AWRGljDqHve3Xdryv4PkoADfZF/z6mZdCOllXWokc0ucGrYc9sA O5kXEh67YAS2KkoPA04N562GqdPJhNgBpb1AK70yb1zhmux1s14tmWZyyqsLEkPc9vcL LhFoXlmqy0r3F6kAQAGZcvy+aSluN5iVDoG790n43YUusTqJiaV2S7P4kl6YF5MZ4FV9 Xf5A== X-Google-DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=1e100.net; s=20230601; t=1719849676; x=1720454476; h=references:to:cc:in-reply-to:date:subject:mime-version:message-id :from:x-gm-message-state:from:to:cc:subject:date:message-id:reply-to; bh=Ss+2ICQzFRKjtOjds8Cw+zYfVtmOqmn+BS9u7U7dT7o=; b=BD0ABj7fuAeY+IEEdtV1M1ddVnQ+rg6l8GxeTAxiAL5fcHkIagyAzM+HSqwqyXX6XG 5tDWcx6i56Jlfz8fc0cj7ypQKxD/DxA4yLpt/kZcUzDm6O+Y+PQ1cO0DieND9qFR0Gy2 lZXUqJok8LZH8Qofo/WDPshSd8Mvr4MxrqFBrFYlrVgyNF4d/w6ASXrebGBMhwUuu/Fg gwPa88ewEJ2E9WCq182CixC0yKDswdwP99AVwAhp0L+X2RoPi5+KGl8OLGWZUT/k5UY6 7NEM2w5pJDy7LQ13RoV1DtOQAt+mpguzDpTMiXCgpEMxVE1FATpVyzz493BQ9edzWaR4 QfZQ== X-Gm-Message-State: AOJu0YxpcS7Qd2Z9e493VVry7SNY0OoQ2BcoXXNLSGrKNBSN6Hph6H5B t9/khVVVi7OneLydPE0OdQ7u5SP7Rl3fUxiBym2idh+rquhVoRa0/SUlfsSES2o87k51VHcyIIj oVb+JK1LtwjQIXCGwIdGACsWhXI3SF2uXThindBf6VSCqw1/9SsjnLd5QkzUXBqYKvuE4lSA+YE sQgIrWgkYhTwAWjRPhT5ernVBTKpDnht/TS8/YELxITXk= X-Google-Smtp-Source: AGHT+IENXNpSNc5c+cATmBDNb2zCbNbY77V+zFEPb8VN/rLUK3Kh5e/Z64nQUTYN3ceYodnV9DhyAg== X-Received: by 2002:a6b:e609:0:b0:7f6:1542:4e95 with SMTP id ca18e2360f4ac-7f62ee548a6mr572180339f.6.1719849675509; Mon, 01 Jul 2024 09:01:15 -0700 (PDT) Received: from smtpclient.apple ([2601:283:4600:6770:bc64:9d6d:433:900e]) by smtp.gmail.com with ESMTPSA id 8926c6da1cb9f-4bb73f96963sm2207183173.115.2024.07.01.09.01.14 (version=TLS1_2 cipher=ECDHE-ECDSA-AES128-GCM-SHA256 bits=128/128); Mon, 01 Jul 2024 09:01:14 -0700 (PDT) Message-ID: <39B8662A-FD7D-467A-883C-E8D71B5A4E02@miles.systems> Content-Type: multipart/alternative; boundary="Apple-Mail=_1F756202-4195-4B21-B6B1-8708FE4892E0" Precedence: bulk list-help: list-post: List-Id: internals.lists.php.net Mime-Version: 1.0 (Mac OS X Mail 16.0 \(3774.600.62\)) Subject: Re: [PHP-DEV] [Initial Feedback] Typed Arrays Date: Mon, 1 Jul 2024 10:01:03 -0600 In-Reply-To: Cc: Larry Garfield To: php internals References: <07A8534A-1B45-4F15-A78B-AA7DDF92B8B6@koalephant.com> <5BA404A4-7281-475F-A1F6-D1252ABB059D@miles.systems> X-Mailer: Apple Mail (2.3774.600.62) From: richard@miles.systems (Richard Miles) --Apple-Mail=_1F756202-4195-4B21-B6B1-8708FE4892E0 Content-Transfer-Encoding: quoted-printable Content-Type: text/plain; charset=utf-8 Hey Larry,=20 >> interface iArrayA ['a' =3D> string ] >> interface iArrayB extends iArrayA ['b' =3D> string, 'c' =3D> ?string, = =E2=80=98d=E2=80=99=20 >> =3D> SomeClass, =E2=80=98e=E2=80=99=3D> iArrayA, =E2=80=98f=E2=80=99 = =3D> mixed ] >> $array =3D (iArrayA &| iArrayB) [ =E2=80=98a=E2=80=99 =3D> = =E2=80=98hello=E2=80=99 ]; I will start by advocating for how much cleaner this is from its = objective counterpart. It also aids in reusability. > As Stephen already said, we have this already. It's spelled like = this: >=20 > class A { > public function __construct(public string $a) {} > } >=20 > class B extends A { > public function __construct( > public string $a,=20 > public string $b,=20 > public ?string $c, > public SomeClass $d, > public A $e, > mixed $f, > ) {} > } >=20 > If you know the keys at code time, use a class, not an array. Full = stop, period, end of story. Using an array as a record object in PHP >=3D= 7 *is wrong*. It's slower, more memory-intensive, less ergonomic, = harder to debug, harder to statically analyze, harder to learn, harder = to use. If you're still doing that, it's past time to stop. If your = legacy application from the PHP 3 days is still doing that, it's past = time to upgrade it. I feel this is a common misconception, or can you clarify this for me?=20= Array access is faster than object access.=20 I didn=E2=80=99t want to claim this without first running the = benchmarks: = https://github.com/EFTEC/php-benchmarks/blob/master/benchmark_array_vs_obj= ect.php=EF=BF=BC php-benchmarks/benchmark_array_vs_object.php at master =C2=B7 = EFTEC/php-benchmarks github.com Good news is these benchmarks already exist! I just cloned this repo, = required the table builder, and profit. composer require eftec/mapache-commons php benchmark_array_vs_object.php ... To save you the trouble you can refer to this Medium post: https://medium.com/cook-php/php-benchmark-time-fc19d813aa98=EF=BF=BC PHP, Benchmark time medium.com I figured you=E2=80=99d say something about the =E2=80=99newest=E2=80=99 = syntax so I added=20 class DummyClass { public function __construct(public $hello, public $second, public = $third) { } } Thus, my results are as follows: Array numeric no factory: 0% baseline at 0.414 = (mind you im on an older MacBook) Array no factory 0.95% Array numeric factory: 566.1% Array factory: 650.07% Object Constructor: 609.03% Object no constructor 82.77% Object no constructor setter/getter: 2058.43% Object no constructor magic methods: 2273.91% Object no constructor stdClass: 112.53% These were pretty consistent with the medium post. > So new language features to make "misuse arrays as objects" easier are = actively counter-productive. >=20 > A Dict / Hashmap is appropriate when you do *not* know the keys in = advance, and thus cannot use a pre-defined object for it. There are = plenty of use cases for that, but in that case, all you need type-wise = is the key type and value type, because all entries should be of the = same type (give or take inheritance). Mixing in random other types... = is wrong. That's the whole reason why people keep talking about = collections/typed arrays/generics. I think the point we can take away from this is that we could=20 speed arrays up even more if we make typed arrays stricly bound and not = a =E2=80=98hash=E2=80=99.=20 If we knew the keys in advance then in theroy we could make access based = on the=20 numeric value of that property in the interface definition. But as I keep saying this is worth investigating.=20 > So the "array interface" syntax you keep posting is actively = counter-productive. I=E2=80=99m absolutely just trying to help while I have an abundance of = free time. I do admit to been a n00b sometimes. If something isn=E2=80=99t fast lets talk about how we = might make it faster.=20 I don=E2=80=99t think anyone disagrees with you in that this is a big = undertaking that shouldn=E2=80=99t be=20 taken lightly, but the community is strong and we=E2=80=99ll manage, = even if at a turtles pace :) If my understanding above is correct then Larry=E2=80=99s message = actually highlights why we=20 should implement this feature. The community thinks objects are the way = to go,=20 since its the only way to go. Best, Richard Miles --Apple-Mail=_1F756202-4195-4B21-B6B1-8708FE4892E0 Content-Type: multipart/related; type="text/html"; boundary="Apple-Mail=_F1FC7F81-4C12-4D6D-A5F0-7DF446CD6D19" --Apple-Mail=_F1FC7F81-4C12-4D6D-A5F0-7DF446CD6D19 Content-Transfer-Encoding: quoted-printable Content-Type: text/html; charset=utf-8
Hey = Larry, 

interface iArrayA ['a' = =3D> string ]
interface iArrayB extends iArrayA ['b' =3D> = string, 'c' =3D> ?string, =E2=80=98d=E2=80=99
=3D> =  SomeClass, =E2=80=98e=E2=80=99=3D>  iArrayA, =E2=80=98f=E2=80= =99 =3D> mixed ]
$array =3D (iArrayA &| iArrayB) [ =E2=80=98a=E2= =80=99 =3D> =E2=80=98hello=E2=80=99 = ];

I will = start by advocating for how much cleaner this is from its objective = counterpart. It also aids in reusability.

As Stephen already said, we have this already. =  It's spelled like this:

class A {
 public function = __construct(public string $a) {}
}

class B extends A {
=  public function __construct(
   public string = $a,
   public string $b,
=    public ?string $c,
   public = SomeClass $d,
   public A $e,
=    mixed $f,
 ) {}
}

If you know the = keys at code time, use a class, not an array.  Full stop, period, = end of story.  Using an array as a record object in PHP >=3D 7 = *is wrong*.  It's slower, more memory-intensive, less ergonomic, = harder to debug, harder to statically analyze, harder to learn, harder = to use.  If you're still doing that, it's past time to stop. =  If your legacy application from the PHP 3 days is still doing = that, it's past time to upgrade = it.


I feel = this is a common misconception, or can you clarify this for = me? 
Array access is faster than object = access. 
I didn=E2=80=99t want to claim this without = first running the benchmarks:

Good news is these = benchmarks already exist! I just cloned this repo, required the table = builder, and profit.

composer require = eftec/mapache-commons
php = benchmark_array_vs_object.php
...
To save you the = trouble you can refer to this Medium post:
<= a style=3D"border-radius:10px;font-family:-apple-system, Helvetica, = Arial, = sans-serif;display:block;-webkit-user-select:none;width:300px;user-select:= none;-webkit-user-modify:read-only;user-modify:read-only;overflow:hidden;t= ext-decoration:none;" class=3D"lp-rich-link" rel=3D"nofollow" = href=3D"https://medium.com/cook-php/php-benchmark-time-fc19d813aa98" = dir=3D"ltr" role=3D"button" draggable=3D"false" width=3D"300">

I = figured you=E2=80=99d say something about the =E2=80=99newest=E2=80=99 = syntax so I added 
class =
DummyClass
{
= public function = __construct(public $hello, public $second, public = $third)
{
}
}
Thus, my results are as = follows:

Array numeric no factory: = 0%   baseline at 0.414 (mind you im on an older = MacBook)
Array no factory = 0.95%
Array numeric factory: = 566.1%
Array factory: = 650.07%
Object Constructor: = 609.03%
Object no constructor = 82.77%
Object no constructor setter/getter:  = 2058.43%
Object no constructor magic methods: = 2273.91%
Object no constructor stdClass:  = 112.53%

These were pretty consistent = with the medium post.

So new language features to make "misuse arrays as = objects" easier are actively counter-productive.

A Dict / Hashmap = is appropriate when you do *not* know the keys in advance, and thus = cannot use a pre-defined object for it.  There are plenty of use = cases for that, but in that case, all you need type-wise is the key type = and value type, because all entries should be of the same type (give or = take inheritance).  Mixing in random other types... is wrong. =  That's the whole reason why people keep talking about = collections/typed = arrays/generics.


= I think the point we can take away from this is that we = could 
speed arrays up even more if we make typed arrays = stricly bound and not a =E2=80=98hash=E2=80=99. 
If we = knew the keys in advance then in theroy we could make access based on = the 
numeric value of that property in the interface = definition.
But as I keep saying this is worth = investigating. 

So the "array interface" syntax you keep posting is = actively counter-productive.

I=E2=80=99m = absolutely just trying to help while I have an abundance of free time. I = do admit to been
a n00b sometimes. If something isn=E2=80=99t = fast lets talk about how we might make it faster. 
I = don=E2=80=99t think anyone disagrees with you in that this is a big = undertaking that shouldn=E2=80=99t be 
taken lightly, but = the community is strong and we=E2=80=99ll manage, even if at a turtles = pace :)

If my understanding above is correct = then Larry=E2=80=99s message actually highlights why = we 
should implement this feature. The community thinks = objects are the way to go, 
since its the only way to = go.

Best,
Richard = Miles




= --Apple-Mail=_F1FC7F81-4C12-4D6D-A5F0-7DF446CD6D19 Content-Transfer-Encoding: base64 Content-Disposition: inline; filename=php-benchmarks.png Content-Type: image/png; x-unix-mode=0666; name="php-benchmarks.png" Content-Id: iVBORw0KGgoAAAANSUhEUgAAAUAAAACgCAYAAAB9o7WcAAAAAXNSR0IArs4c6QAAAERlWElmTU0A KgAAAAgAAYdpAAQAAAABAAAAGgAAAAAAA6ABAAMAAAABAAEAAKACAAQAAAABAAABQKADAAQAAAAB AAAAoAAAAACB1zOOAAABzGlUWHRYTUw6Y29tLmFkb2JlLnhtcAAAAAAAPHg6eG1wbWV0YSB4bWxu czp4PSJhZG9iZTpuczptZXRhLyIgeDp4bXB0az0iWE1QIENvcmUgNi4wLjAiPgogICA8cmRmOlJE RiB4bWxuczpyZGY9Imh0dHA6Ly93d3cudzMub3JnLzE5OTkvMDIvMjItcmRmLXN5bnRheC1ucyMi PgogICAgICA8cmRmOkRlc2NyaXB0aW9uIHJkZjphYm91dD0iIgogICAgICAgICAgICB4bWxuczpl eGlmPSJodHRwOi8vbnMuYWRvYmUuY29tL2V4aWYvMS4wLyI+CiAgICAgICAgIDxleGlmOkNvbG9y U3BhY2U+MTwvZXhpZjpDb2xvclNwYWNlPgogICAgICAgICA8ZXhpZjpQaXhlbFhEaW1lbnNpb24+ MTAyNDwvZXhpZjpQaXhlbFhEaW1lbnNpb24+CiAgICAgICAgIDxleGlmOlBpeGVsWURpbWVuc2lv bj41MTI8L2V4aWY6UGl4ZWxZRGltZW5zaW9uPgogICAgICA8L3JkZjpEZXNjcmlwdGlvbj4KICAg PC9yZGY6UkRGPgo8L3g6eG1wbWV0YT4KMyImCQAAQABJREFUeAHtXQdgFVXWPikQCCUBQu+99w4q RYoFe0XsbV3r/qurq+jadV131bV3XbuiIEUQpEsH6b1DSAg1EEiF5P3fd+bdZPJ4gRAyIYR7IW9m 7txy7jdzvzn33BbigxPrLAIWAYvAWYhA6FlYZltki4BFwCKgCFgCtC+CRcAicNYiYAnwrH30tuAW AYuAJUD7DlgELAJnLQKWAM/aR28LbhGwCFgCtO+ARcAicNYiYAnwrH30tuAWAYuAJUD7DlgELAJn LQKWAM/aR28LbhGwCFgCtO+ARcAicNYiYAnwrH30tuAWAYuAJUD7DlgELAJnLQKWAM/aR28LbhGw CFgCtO+ARcAicNYiYAnwrH30tuAWAYuAJUD7DlgELAJnLQKWAM/aR28LbhGwCFgCtO+ARcAicNYi YAnwrH30tuBnDQLc9cLufBH0cYcH9bWeFgGLwJmPgCG9kJAzsyyU32PZLQGema+GldoicGIESB5H j4osWyYyf77Ijh3OtcekcmLB8ghBwitbVqRJE5HevUUaNcojYOF5WwIsPCxtShaB4oXApk0iTz4p MnasSErKmdMMDgsTqVJF5KGHRB54QKRCBc9wDbHbYnqGrU3YInD6EFi9WuTaa0VWrXJkCIW53zSJ T59U+c/ZyMoyfPKJSLlynjSHLQHm/5HYkBaB4o8AiSM1VeTyy0V++80hDUMmxV/63BKStLOyRF55 ReTRR3PfK6QrS4CnCKR7X/mQ02BbyeILoi5EQkPPUGP3KT4DGz0AATZ5r7xSJDPzzNL6AoqRfVmz psjcuSL16zvlKcR6ZofBZKOcvxN8X3O1JEh65s+kQFIsio+uIV/KBKlM9vZ4tiLAl45/U6c6nR1F 8RJ6jTW1wD17RGbP9iQnTztBtsfukIWLlkhoGHk2eAXlMypTJkL6nXcuOoDKaCE3bNgky1aslLBw GEPzcEczs6RBvTrSqEEDmTFrTkBvuVsTysk3E3G6dOogtWvVlCnTZsAunCYhx/kEZGb5NHyDenWz pdCU8bMbD2XlqjWybVusHE5Jloow1DZu1FBat2oplaKjssPndbJn7z6ZPWee9DmvN8JH5xXsuP5b kfd7H36KMD4pXz5S/vLAvSrHcSPZmyUXAVamjAyR2NiSU0aWiT3Z7NChK0Ttj8l5QoDUTKgVLV6y TB55/EkpXbq0ZLEgOVzEvNWxCVetWox06tAumwCn/z5Lnv/nvyUiIiJoHCaTnp4uV11+qdw49Bp5 bPgz8KGvQ3yqkaE5qJoYSIyOuKWmpcm/X35eLhw0QF545TVJSNilzUYN4QTTsCZ8GvJgeBKgKdOR I0fk2x9GypfffCebt2yVUqVKSSmULz0tHWXMkpbNm8ktNw6Vyy+9WMLZm5WH+37ESPnp57Fy3rm9 8giRt7eRZd/+RBk9brzKVrlSJbnn7jssAeYN29lxh81evLclznlUJk8I0IAfBgIIxd+g8/vJjcOu E5+SUW6m4VVpkAgrsKnY4eHhEhYaJjffcJ0MGtgf8Yydy6RM26hPqlaNkRrVqsqXn76Xza2hUJkX Llws/33nA7lg4PnI99rs+IzTpHFDzYfEVad2LXnqib+hgykSfqRPt2whyCML4RtppiTVlJRUefal V+THkaOlfoN68vwzw5XwIjF2KSnpkCyAtvu/r7+Rvz/1rGzctFkee/gh/RDkSO2cHU5OljG/TJBL Lr4gu9zuMMyLjnjkODa1c654FgaS148E5I6IKC2h/g8A77njmvTob5y5775n/BjG7W/i2KNFoKQh 4CkBEiySV/Vq1aR7l84nxC67AqKmZ/oypV7dOvmK16Nb11xpJ+4/IEfxJawOcgyW78GDSSCILCUN 3i9fHl3sx3GUi4Tw9Xcj5Icff5b2bVvLf/71ojRu2CBXrK5dOknXLh3ksSeflc++/EZat2yhJGfi m8BLl62QAwcOypALB6lXXmSTl7/RdN30yITc13nHdaQIdj+YnxPa/loESiYC3hMgySyIBndcOEk4 0GdoszueCyQWc30UNgMqS2ySBncOVTB8xtEjGsTEDQxv/Glv+wLN3mjY9x5/9GElP3PPHacbCPWh +/4kDz3yOLTB76R/33OhYeYm2NFjx4MoO0lTv3aZgWb1tm3btbxloU3Wq1tbCXfT5i2ybPlK4f1m TRpLOxAvteNATdDkHwbtlyVbvXqtrFqzVtNo3aqFtGrR3ATRY9KhQxIXv1PPq1WtKlUqVxI27Zet WKWaK22yHdq1lQb16+WKZy8sAiUNAc8JMJdaEgQ9VtiAlp0/FO4Ev5GdynE1luPGdW6SSI4bjLL5 2ea3qdMkdke8XAHbXjeQVzDyM2Xpc25vue6qK9TmmJyckosAd8TFy5x5C+TZfzyODhinByYeZHTH PQ/IgYOHpEmjBvLZh+/AzviTapGqrQLEMrCHnndOL3n2yb9LZRAWnVv2MHQ0paSlyn9f+EDGjPsV Q8FSFPrykZFyx203yT133qZlYXlmzZ4njw5/WtO4edj1cvvNw+TpF16R32fPhQ0d9iOEiY6KUhPE 3XfcoqSrge2PRaCEIeA5AbKS0haYl3NX4uwwxhMaGh3JJpgz5BTs3vH9THohsD+W1qB5pcW8M9Gc XrZspRJO7549yA+QyQiZk5PxYa/uKy8+ozZE2iTdbtqMWRIJUurWuVO2N4t35Gimht+7b7989NkX 8sHHn0t4KdhQYecLDaXWFyITf5uKDqVS8soLzygpmVIwoVB0Z7/7/ifyzQ8/Iv2yiBOqHTRHoA2z p5ga5ID+fRlU86F/OHrZV0NTfO7lV2UsbJIVKpTXeNQyU2CnfOu9D6VS5WgZes1VQQlfE7M/FoEz GAHPCbAUKtPS5Svk3/99W7LQpMUIuWy4aB/k8JGbbrheyldgM9FQiHNkRaTLi5z0ZoF+SCqhQu3q 9bfe1V5qWtByJMMYUhDSNVdeKk0xMZs9zrt279bhOmye0pEEj+coM/Nwy56GnuKffh4jA8/vKxUr 5sxvZOdLqIYPkYNonn7+5bdy9ZWXofOor6SlZ8hX3/wADJdrLzlJkL3fvXp00+wpB/PYs2+fTJk+ Q4ajed68WRPZsHGzfPjp/6AJpkKrO4JOl1+lX59zsz9GjFMqvJT21Eeiif7UE49I86ZNZUdcnHz0 6ZeyF+nxw/X5F9/I+X37SDV0OFlnEShpCHhLgKicodAyNmzcJOvWbQB2pBh46plPCbFGzepy1RWX aUcEK7M6BGPlW/jHEj2yQ8PtdOgMKiR7eY+nXbrjBJ6TAJJBDt+NGOWQmZv9EDj9SIZ079ZFCZD5 0w4XFhauPdaBaeV1bcjPNJeXr1wFgomXIRcNziuKZIDwLh1ygbzw9BPZZWvdsrnc+ecHZSeG7VBz m79gkRIgSZPaI48ZkPe+P90pd91+s6bN5vLWbdtkBHqsqenF70zQJnl5Y49EPFPkR//6oFx52ZBs maKhwf4dHTkk8Lj4BFm+YqVqjyTTLbBVEn/zqEwk9rCzac4xltZZBM4UBLwlQNSwDAzMvOiCgfKn 22/VipMNDGsQam94qXA1wpMsDFGwdnFozNTpM2XS5KnZUcwJ0+zcsYMM6Nf3GC3LhDn+EeSLSlw1 poq8+uKzSr5KBoYREJmy1KlTS48cz8emJ5vCJMKTdYYIR44eJ61AZs253A8cyQvFhtMfnqDZGi5X X3Gpkh/vk6bYG35u757y1bc/qP+mrdt4QzW/kBCUBQGjYLMbNLCf+pufVuiFDgkZo+GI2dEjGFBK 588uC1ouy9gfmiGdwb9H1y5Su2YN2QHb5BF0EiXs2qX3t22PlWG33iUpqRhA7giu/vxJg98wjMl8 8Zkns9PJvmlPLALFFAFvCRCF5ti/6KiK0qxp4/xDgIqfjgp7xy03ymBoeSQet2NFrVC+vJJSYEV0 h8v73CFbkmyzpk3U9pVXWObFsXYxVWLQHE1XTSqvsMfz37Vrt8yeO0/+itkaZoZLAIeQ6/SDYLQ0 3ndIUHS2CGUB80gqxiM65zn3WRYTz8hBDY7h1ZmEzE0cSZzsoS6DGTjObT8uGNhdDvjyI8EbHP9I Vx42wj7nnaNaaiDufF4tm+fubdZI9sciUIwR8J4AUf8yM1WVcSptEDACKxM1FFY+DlTu2rljkBiF 40USYZOSTgklIFnKxT/aIjt2aCsTJk3WHtzLhlzEGMdoQSb6gYMH5UXMNGGT8cm/Pyw1qleX36ZO x8yQcLXDmXDHHFlukH06msHGGWwOJCU5ZAaZI8qUdvJ2YDVB/SSWfXnCE04DpH3zCGyE7GV2XIhq fSnovVYCxcOIiHCmKNapVUtef+XFE6drSPeEIW0Ai8DpRSB3F6UHsqCFZlpceaZ+DPmoOoKZGHp0 yIlh3H95JlaIN9xyDezfT+qCkKeAyP5YvEQJyMjDLN3nMzE3mbNFdiYkoHldAVMZj8jIn8dpE5Xj CN3pOuJy3KPj0kFGk6ZM8185B847nj1nvvZYc2xkvTpOR8yx6eSKdsILzrahTXLxUqwY7HIce7hj 506dxUP7YTUMKKdjfuajkNfRlYw9tQgUewQ8J0BqShyjRpdXpTFaTm60ctSbYPFyhy3YFdNl05Eu WB5GLlb8hpj6Nmzo1bI/8YC88tp/hfYwE8cdf/nK1fL2ex+jhzVcbrj2GjRLI9GDC0IB0Vxy0QXZ eemJ60dLCxakPN9+/6O88/7HsnbdepDTcnn2hX/J9thYtf+x06d7V2dWjfOBMNTpSiwfp1TSKD8H QL/4r9dk/K+TZf2GjTIZBP/q62+pBu7YSWOkDQZT58flPLH8hLZhPEfAauInhNjTJjArBCssew5H j5vg2JQCRCK5cBWYvrAtlS3jNLWy1aFTrFHHix6C9l8Kmqhjx0/U/INpU1lZmdIFnS31/TMibr1x GMoSi+lwo+TOex+Sm4deh6ZxO9jLysn+/ftl3vxF8g3IKwH2vttvvVEuu+RCLS0XPWjevIm0aNY0 oPTmErY3nuKH9rgO7drIa2++I5998bVO6SNJce5yKjoaevXoit7p3FP/clIxZ3kcXVwJ2NW2Wr9e PZBuuDz48GOYlxyteRB/Nn/ZhOdwnLrQOI32l0fK6u1K/njB7L2iQoAP2ZCg+9zkTz/jGM5cu+OY ++YYeM8dj2Hc1yYs/U3aPHc7d3jjH8zP3Cvko6cEyKlo1FK47NP0GVjPi+3hAEctg9OxRo/AajB+ AmQzj72WmSCggjjmybFvgZ0n7rQyM4/K7t175KlnXwTvHCsXrH/CcXv/eeX5bALkFLHnnnpc6tep C6IbIc+8+E8QVlkdT8cZFLSnkSxp97sJCznQdsihK9Om/y6P/PUBvc6LSAx50AZ456036WBpjvmj nHypiFPr1i3kqcf/Jlx8gY5pcfgLmZMkGUjixI84UgPPMD3AGlNj67Ph4OdH/nI/cHhJtmzd6k8D mnHpcLny8kvktptu0BhGG86Obk+KPwIkkrp1HVLCSkgYyMovmyM3CQnvq661h4H5sHOIHD7s3Df2 YHaC4f3BSh8OgWF4FF4MJz7Tg3IDA7Gz8CqvGa5GDScOOy6ZH2XgH6/xQZW9e2ngz8GOcnDB04YN nXBo6cj27YI5p4KBujnhPDrzhABNZWFT7YO3X9dZCsQgmCP5cLks9xp6HChcF8MzWjRrFixKnn4m X05V+/T9t6Qe1gsM5iLLlZWXnvsHejPT8WzyEAwRSTotA+bRRkDWe/90O5a7ukiWLFuuc2eTk1N1 YHPL5k2lbZtWSuiGUxn+5ef/gWZrFxXlePkxAMfTlUcPLGd7XIrVYpZg4QQOym7Zoqmcg6EwnKJm HNcffPeNVzUrzmiJQm+72/XBzlrEn2QeiaZ4Ob7ocPod8pebxEmN84tP3pOZv8+WjZu3QCMuq9P9 Ondsr5qnO017foYh0KqVyG23iXTCzKMFCwSrcDgFwDuGL6rI/feLYPC7XH21yM03OyS2eLEThmNG 27cX+eADTFXC8K+77xZZscIhsJ49sSjmbpE1awQvngjr6l//6hAp00THn67iTAKlI6HVhu361ltF tmxRL93s6JFHRM45RzBQWASzjzQeJgNofn/5i0OKTmhvfqE1WHeaEdiydZuvV99Bvrade/k69ujj w0Krnko0bvxEX/N2XX2tOvb0XXHdTT6YAjzNzyZeRAhguIXv8GGfb8gQ6lWYrYkdL3i8+25HgF69 cvzDwny+e+/1+S6/3OcLDfX5atf2+RISfL5Jk3y+UqUcv/Bwn++WW3y+l17y+R5+2Oe78konftWq Pl9cnM/39tvOdenSPt9TTzlpMb/PPvP5tm/3+WrVcu4z/YgIn+/pp32+zp0dv0qVfL6xY32+uXN9 viZNfD7Kw/zKlXPC0Z9yOLqnzzd8uFOGQv71RAP0hqqLX6p4FrmEOpF2lyuw64LpsMnO2SdM0unc 4JMvnPRdWekpTQMctxcWlokeag4DcvJx51fQsgTmZa9PIwLm/WFTl8/ZXPPIJun33zvaG6/ZLKWW R39e849xfvxRhFokm7ibNzuFMfdMU5Za3scfC+w2zn1qckzLOIanDJ9+6hzp/+CDIoMHi/TpI7Jx Y07TnHFfftnRJGEak/h4k4onR0uApwBrYZEEO4F6Ym4vO2XYaVQBnSp0hZV+YBE5rKXPOb21o4Nz mzkcxsv8AvO310WMgDHzkISMo92tQQOnmWr8eCQB+sfG6iZEPF+40B3i2GYp08ewqVyOpEebHx3P u2HuOvPnJu1sHrMpPG+ekzbjGzJleBLqe+/lxKefR84SoEfAnkyy1fFCvP7qS3hRGAsLI/iHDZ1M GicTlrZZM8CcJOsMeD6ZFGzYMw4Bdn5cdJFIo0ZO58Ull4huNMTd1owj2bHT5PrrHZKjXfDVVx0b oQkT7EiCczte0y54zTWC4RFOR8mwYSKvv+6Eou0Row9kyhSHcN1xzfnKlc4ZyTEwfROmEI6WAAsB xFNNAo9YFzRAXwUcuyz05FSTzTO+Jb08oSm5N0gi/COhkAzZexuMWOhHbYy9vea8IKgwLv/YU8w/ jIjIdmwqU4aUlByZsm8W7YlLqqLN2OaWGwGvmru5c8m5Kur8cnK2Z6cFAZLRpEk5zdk5c0QaNMgt CkmKNrcRIxxiYtPXbcvLHTrvK5Ish8SMHu30FDMke35NjzDvsamNpfCUkPNOyfM7lgA9h9hmYBEo JggYLYwExbF2HHMXE+PY2qj1kSR5jxobCWr9+oILznRMfkyF+/oyfdr/1q51Oj44NIdjWqkJMrzJ n+FJjpSB9zx00EOtswhYBEokAiQVOtOpYY70I9mQ6Dh2j2MCqZ3Rz/yZMLwO5uhPgjLO5GWued9o fPQjwWIxDR1LSLvgm2+KtGsnQtugcYYEKc8NNzgkmFf+Js4pHj3TANPQbc6NhDi0gkZ9brDDQcFn quPQkc1Yh++Izqhw1ugLXH7qTC0bV5/h4qkchM0vcUPsg8wpedad4QiQPNgZwU4HamMDBuTMzuDA ZHaEJCY6HRUc8FyxomCvWWc2B9eAJMEFEhDrcIMGgtVvRWdvcAYJVg/XsCTUKlVEuN4lNT12umzd 6mh3TPf220VGjXII+ZNPnHSefx5rvVUSGT/eSadhQxEOsp4/X7Bxt2MrdPcQF/IjwUjJwBIWTg6r 16yT2/90v07BqoDl7j//6B1pWL9+4SR+GlJJxAj6G269W7iuH4ninTf+Jb17dj8NkhRelnz0tAVi ILbcdPs9umI0V3/5BLNo2rRqWXgZ2ZSKBgESBYeesBd33DiHPPr3F+nSxenUwHzybG2QRMaOCBIR NTWSI3tmSXqrVjn2Qk6NC3QMM2iQE5YaJXtrJ092bH5stp5/vkjbtjmdH0brZFOXw2DeftuZfsd0 mX/fvo68PCfpYuUjmTDBmRnCMEYrHD5c5IUX6FOoLrxQU3MlxmlkHGzLgbYZR0rrwqiu22fcKT8T XDePc2tJHGaw8hlXkCAC81lxpWuWLSszPHsj+SBBrdeZhABf2qlTHYKi3CQTEg0d7xnNiv6ff55z zTDmngZ2/dBuyAHN5r47LKewjRkj8vPPTgTeY9p0DM883Y5+lI9/xpn0DPEZf4+OnhEgNQvuVMaj HwItgqNwwg8TUokH7+fljHLKMO7zwPDmHv3dYZkxc8/JMzCmc23ia1wOxgsiF6WkqEZe//otueRi Oua+OyeTvkrjL64Ja46B4U05gqUXNCw9T5h/jvw5Mjl+3FeEeWl+LKjLucMSHK6kY5y5Z+Sl/4lk NnHt0WMEDOGY58mj8WPW5tr4mXDmOph45l5eYXnf3GP8E4VnGBPehHXH47mHzjMCPGaFFVed4jJL JCez+kte5WNF4gor3JSIg3XL+lepCEYaTMNUPHNkPgxbBqtScHvJQIdHRTE0HrUfnRaGPLk6MtM4 Jh/zoFwJMRyXqfJh5RsunZ/nJk18L3J4Ay0NZzoa1w3kYhB0Jj9zj3uRME2SjiMpQ+V2lJkLGvA+ 9xPhsln5cUbu0hFO3seLo1iofZAtpCxVIujHPzpuFcAd/viMiDWdKYte2J/Th0B+ScUd7kTSHi+s +577/HhpusMZzfJ44QvxnmcEmFtGLCuP5eDXYcHNr78bIRs2bNLKw/04hl53FbZjbJI7OK7i4nbK z+PG62rFSUmHlJS4+slFgwdIN8xkMO7AgYPy9vsf6b4VtbCRz/1/vguLh+6Q/331HRYUXacVtmGD +nITNgBv1aKZiaZHVt89e/fJuAkTsVDGH7Ivcb8ubVW3bh0ZPKA/NiLvmSehhWNLyT179srXWBbr j8XLtLnPFaNvuO4a6dwJBmW/24Plf7hAKuf6NmpUT+667RZZtmKVfPq/r3TF6OioaN2R7YJB5ysm M2fNlR9++hkLbezWVWEuRHm5Y1sgsbLclHvu/IXYwnK/xq0WU0X37CBGXNHFuJFYj3ABdtjjM7jj 1mFSHYbrz778RuYtWCh/ffBeqRwNI3QeLnZHnG7TmY7lvripUp06teVObLTOj8T8hX9gIdVJut4j SbAc8uSmT5ddcrHuQ5xHktbbIlBsEPCUAI0WSK2EG3C/9K/XdWVkrnrMjYEWLV6qe9n+++Xns1c5 JjILFv0hTzz9IoYqbceagFhTENoHNbj5CxeDFH+RB//8J7n1pqGqcSSnJMvIMb9IEvb4rQ0C6nNe b3niH8/LCqzMTO2Ja/ItxrJV85Eml8hib7Rxa9aul8eeehYr8ayHdhaq23SGIJ9FS5bKuPG/Yne2 y+Txv/3Fr4WZWDSjhCn5vfH2eyCRRejddvLhUvKz585HB8mrIMEOGuHQocPy46gx0JLSpAWIvjsM 0vf9399A8PESWaaslo9ERO2NJPno8KeVzI3mx/QOwbZy2y03qrbKRLdigdnHhj+j+y3z40ktkNoX OzAmTp4qs7D+4kvPPplNgsTtux9HYs5vKDaBaiRrsEXpiJE/w46ZpWRWhb1wbkeFE243yPsxbI+5 YNEi1ehqgDj/gz1B+Pz4IfvXa29ijnyaarOZeEbh6O2fPW+BjMLzeO6pJ7CVZh/Eo4btpGd/LQLF DYGwZ+C8EGo3tKOfx453KgAyWLBosW6n2LZNa2g2kViW7KASy2H0NK1Zs16oAbH5xMr9wMN/x9zq BG0acsvGqy67BLuyVVHy5IKhJIwWzZtJI2h2hw8ny6jR47SCshxzUQG5iXmHdm01/UNIn1ta7t+f KGzu9ereXbUlan4PIp8N0EpJ0Fwrr1XLZnqkTNS4Fi9ZhnX0ykqXTh21mTcCmtlhrFZBolmxerXs jN8l7dqiPFg3LelQkspLebgp0qCB/ZVweE5CIPmQyEnE3CC+SeOGugk6/dlcXLV2HRaNnaVmAa4e nYwBoOycILFt2rwVm6T3093raBIYjo/DnHnzIXdpqY8hKzcOvVZXbabmS7lJ7DWxMGWb1k5P7rSZ s7Bu4SZdZHX9xk2yFGsMUuYmmBd64eCBqs2RpLlBFIcsXYUN4Wme+DtIlgRPfLiAwpuvvYI5xJ10 n+e/48NBwua9QdCWuT4iyxKHrTSJHz94TLtcZI4m6sV7ZtN0IeB8DZ0VXE5lELMrydN+ar6e550n wh7tQnaeaoCUlZ0d1IJqonn67pv/0QrLptT7H30iX3zzg5LGBlTO3+fM1T0z2Pxjs4u2sYsuGCQv P/eUEhbTeu7lf2O/jBFKGGNAriRHVS78PykgjaOZ0fLpB+9IUxDMIZARV3zmJkUkwQXQhA4fPoTh ThWx3/A03XOD9jdusckFUrt36wybY4a88M9XsYnRLyr7T9jMaOi1V4NYcgx4JAqW4aN3X8dS9830 /N9vvK1aFUmWe3lwtWlnk3BHnaK9LPFgorRu1Vw+fu9NJTOuKv3af99VLXUzSK5Tx3by6kvPYShV Zd2bY/gzL0oY8GNamzZtETbxd2IYDjcqL1++HHaHKyPPP/04Fi91TALcY5mbL5E0585fINdfeyVh Qzn0gDKEYGhVAlY3aiHDH30YH5GmSn786BjHjqsMrIT9wj//rbiR4CLxcXj+6SekUwenab9h42bM dDqkctfCqiL/fOFpJczL0fSl9n042fmAJGHKUwzKYp1FoLgi4DkB8qNEreIB2Oa4JwbpIAR28nvu ugPNpUVC8mMTjk3W8/v1UY2DTSxWYi7XzqYom8FsdnLvCjZpqTFxnxF2XLB26z9UcmpMXE6+rV/z oUZJ+9nvs+dqetTGuOsaw82cNVu1JQ5sHtC/L/Yk6a3PiJrPQ/f/WccsMh82RckfHPbCfJhfJjod brj+aunQvh1kccpzFZaPH4N9T7gMPbU3kj4dVqX0H5EWmsp3QD5uyE7Xv+958vFnX6nGxKb3rcOG +klTdIxhrRrVVetlmjv9m5NXi4mRzz58B5pXuOLG/TqodZL8mjRppM1aaoHUfE1HBOWmnNRAuSvd C/8YjhWmc9tDVSAtXoi88c778gfMABEgc2qZTz/xqPQ99xwNwh/uJcznE4p8qG2//ua7Km89aKMv 4YNF7ZIfnEC7ZXYC9sQiUEwQ8JYAUelYCamtsKlGRzpgZSS5NWnUAPaodeCUENmH6TGJiQeEA45Z cVjBvvj6Ox17ZyKyV5SdD9wnIxlNUaf3E+nxHxIlWTVv1kSDm5+KGJxpSJPNZ/ZWHsUS82yicx28 zMwMJQ6GN4TBzoz77rnTJKFHyubjWvLIh/GaNXHyMdoVyYLaH3ueSbDsyQ10nAnDprxxpVAWdibQ xseyRVWKMrdA9ticHMvYUyY6ZwYK15wsq81narUzf58j22JjtQOGeO1Fs54kexT4OLGyk/OncQRL 9neRpiBKU1a9wWLhhETJPUZom6U8/qd1zFL7nbARFE0Zi0GSLPMX33wn33z3oy67X61qjHTBXs63 3DgUH5Ece6vmY38sAsUMAW8J0F9YEhzHmRlnTtkRwppH7ccH7YSkQfJQB/92qGRRFSuo5qKxNSLC gcDq1KmlNkM2c43j+DTaodyOFTuY03yo8eBfKa3swUIF+vnLgIO7ScxQeeUTmIIhtEB/TQMY5O2c e0kgy8efek6mTJupeJF4SZQshzNcCCkcy72aLMtMguIHxuTkL1F2tnxWvM+PCz8cqalH0dnxFswK TaUKpz/BVcQzYVP9rfc+0A6rxERq1uloFiehAydFt9ecO2+hfPjOG/jw1clO255YBIobAp4SIDUm VqiUlFTV7Bq6Sp8OO1NsbJxqGqy4rFTR2NSH9rh9GNaRhSr657tvVzufK1q2RpRNnH4NyR0mr3NW emqLJC82BdkZwesdMNzTUVY6dpjMQBMZnaTa1Dy/33mqkVL7Ox2O2RrZRsP2+dvU6aohNm7YQHeg q4GmMsnqZ3S2vPPhJyqrCR8or/lAcCA3SdPtSM78o130lhuul1Fj0bsOUlu3YQOG7Xwtf/u/BzQ4 TRLctOqVF57RJno8OqzigeEf6DRiLzS10S2YWzx1+gy57eZhaj5wfwDdedpzi8DpRMBTAmQFYxVj x8JnX34rjRs1ym5OcT/e1ej5pO2KFYpjAtk5wTmoGzZynGCoNvHY0WEch3d8/PmXmmYVNCWff3q4 nxhyV2QTPq8jNRzu98sxdGyWTpk2Q66ArbAJxhmSIjmG8J0PPlYZateqofatUrBpUV88Hc7Py5o1 d6IjwVBbbo3ODC6lT8eB2Ju2bHE0bZAYJc2LBDVCkB+GZ7r34sNzO4bdlEMP+Otvva+2wO9++Ent pOwFHoVxhSTbMJBu+/Zt5a8P/FlTI4aUYfmK1Zo/PyR0pwc1zdr+WASOi4CnBMicsTOV2q3mYHjK bXffr0NNDmDM3jyQD5tkNMzXqlkdg457qaDXXX2FTAYhcWDt6HHjtfJ06dJRdqBn+PufRkHTSNCZ FzcOuxb2M8xioHrEv3w6E/TiCwfJDyNHw+6YqFrMfX/5G0ixveyHrY8DfLnZeUpyigzGcJZK2DD8 IGRGRvnMpZCDubLllpk0F5QuU0rmoKf3o0+/wMIb1WT6zFny2xRHM6RGvW17rHYo9ejWxS8ME8mD iuDNO6r9oQOqR7euGmcYhtfMgJ2RA7fZUfX6W++h5/u/Uh521bkLF6kWumLVavSCZ6i5YiN6sjdv 2aYadmZmCGyNjf1524NFoHgi4BkBsjLRjkTtj0b36665Ql7852uydMUKbVaWLhWh2ganh7Hntg46 HhinIwzs//fAvfLK6//VTYK+/uFH+WbET+LjFCzarhCGq7A8cM/dquGwd/YIjP7sJGCPK++7nSMH 7/m0EpvbjRo2kMf+70F5+sWX0Wubiub4DtmCChyC5jGbidRKub8we22pGZGo2Xni5IOms0nIn5nm A5LgfWpo5r7bPzzckcPIx3vOVDasqgFn4pj75h47fSgP3QUg5NFjJ2hnxYEDSfLqG29pU5497YMG 9JNZs+ZBXgyWBgFysDIJUDdIx7NgMzRY50yOjNhcHdlwmA8dzREP3XeP3PuXR/SDxDGBH37yP7kf HURXXnqJfqA4DZBauVIooA8vFQZCzNRZNByUTneymqhGsj8WATcCAfXNfetUzj0jQPZWtm3dSisO ew1vvP4anXL15bc/QJvbAbsQ9kmuVVNuxhS1IdDG6ExFGYYhJg0b1sOYv58woHYdiDBFp6jR1sWh I0OvvUo7RxiH9qrWLVuotsYmmXsKGO+zB7pdm1Zqh6KNkcMzjBty8WCpWbuGfA2ZVqxco8NR2DFT HYN+B/bv5+Tj32ycFZuDr6tWraJEVb4CFm10OQ6faQM5qLkyD5afrkyZCGmLZj0/BqXLlMY6e5zb 6zjK3gobr9eABkcCoXZnHAmtKXqaOQ6PtsoYfwdErx7d5V8vPi2ffvG1ThfkbA7Ke+1VV8iQiwbL q5idMRkdJEyb/nR1sSE1Nz8nvvzQBLqIiDLanKZdluYBIzuJsUf3LmqL/XXiZG3ychD1rj175IVn ntBN4CdM+g2D1ndpTzRlZVm4sf31V1+pPf2BedlrjxHg1w/1oMQ5vM9eOM/WA2TlMdoGNSL+0aWh knEwLjU3zlbglpDHcwkY+MuZBaZCO1PEcsegpmQcK7AhUvoZOdjZQYukDu/gSxLgOCyGBn92JpA4 DJEyvknvZPIxcpj8neaz08Nq0kPSwIiyU2vNfY/isSmLAvAU+HFoUI7c1Lx0bUIQYNVqMVKhnEOe NCvswDQ7Em5MTBV8KCoiD2qsjgapPeUgV7fLkdHxNbK7w5iyM30+S+JERw2f8535XEn81apWVdJ3 x7XnRYQA3xX+3XefyPvvF1GmHmdj6uoHH4jcdZdTPuNXCFl7RoDBZHOTibkfzI/36E9nyEIv8JNX eHP/ZI95paf5A+gcyjnZlL0LT2QC5SJchfhe5Ev442EX+NzylaANVDgIfPeds9S832xSOImexlTY +pk1S6QlpnYW8oueWxXwuIzBKkUwP4pB/2D3gvmdith5paf5n0rCHsYNJD9mVdTk5+QZTBLn2XlY fJv0iRAYPFikg7MYx2l5MU4kX37vm5f6xhs9IT+KUaQaYH7LbcNZBCwCBUTAaEhcpv6665z9PkxS hlDMdXE9+lt/Kt65GAbHbTq5x4gHrkg1QA/kt0laBCwCbgRIciQQ7vHx448iWP0IRlsnBP3PhD9K yw7Bm24SYXPeI/JjNlYDJArWWQRKKgLo2NM9NxYsEHTX52yKVFzLi9EUGAIiwuWvemFssCFvj+S1 BOgRsDZZi8BpR4DanrvZy9ES9CvOjoSHkRxF5SwBFhXSNh+LwOlE4EzqESZpu4nbQ9wsAXoIrk3a ImARKN4I2E6Q4v18rHQWAYuAhwhYAvQQXJu0RcAiULwRsARYvJ+Plc4iYBHwEAFLgB6Ca5O2CFgE ijcClgCL9/Ox0lkELAIeImAJ0ENwbdIWAYtA8UbAMwLkwqBcOokrhnAhUV1dxY8Fl8nifePc94wf j8cbs8k4gfHc1yYPynCivNzxeM44dBlYUsos6cVrdzhen6xjWoexynSwdIwfj8yXzvi58wnm5y5j sPvu+OY8WDjjxyM3PefR+DGeGUKbyw9hcrvc1+7bXKLLYHv8NHKnaK8sAl4hUOgEyBebFX3CbzOw 2VCCLpQ5ccrMnNqDkqzfuEUWLF6WXaa8V2TJDnLMia7WEjBY0p3O8lVrZTpWR47DYp2UxbhgC1y5 /bZuj8NeJRs0+LyFS1TW48U190505Hp8EybPwIZGvyu5BIY3snPp/VFjJ+qqzMbPHTaYX/zO3TIJ 6RL7YPfd8c15sHDGLwl7Go8aN0nX+DN+jIfhqepy+QU8g5xQJqxzJPFNnDxTtsfG5yMNJ479tQh4 jUChLx1rvvjcHJxf/HXrN8kKkFEdbC7Urk0LraDcE5iLanKZ93XrN+uOcdzPN6ZydHZ5uW/ImnUb dcvH1tjE270NZXJyqqxcsx6LcoZJ6xZNdQHOffsPyBrkVaVylLRo2lhJJjUtTZec54rSdHv27sdG 7Ft097nmTRvp6sexIOmtW3dgdepqutPZgkVLsal4shxIOqxL5TdtXNGJu2efrNu0VapWqSxNG9eH zNgKEouBMl8ST+uWuWVk3itWYdMnLBzatnVzLeeyFWuwsVAP3QaUiTKNQ4eSJQkLvnKB0/ZtWqqW xV30tu+Ix4Kne7BJVHOpCLy2x+3Upfpjd+xEGaMhQwOViz/84DDOpi3btYzEuRxWpKa2STLnIrCU jyS0E2mSyBJ278XzaI5wkapxrly9XjFr0wqb16M8qUiPH7DdwKx1iyaK2XbsyxIWFi6UoVHDukjP J5uRZ+uWTXWFbi6KugLPBQlIO5SZK3THgvC47Sn3P07HRvZ85lzodeXqdUi3GfZgOYiPzGapjX1h Gjaom28Czy68PbEInAICha4BUhY2gqgl8B9XcuYfl4Y3bi8qVWxcgiz8Y5ks9GuCU6bNUo2DYTJQ UWbMmq8Ve92GzQiz3EQVEsuPo38F+aQrQUyaOlP2YhvN0b/8hooeqhV+xuwFTv6UAX9cTZlazdQZ czSdtUhzLrS7bdiWc/LUWdjcJ1xmzV2klbIsiIOrVJeLLCPx0B737kvUv7G/TtH0l2KDIIbdmbBb fkaebK4uXr4K6S3WtPkBSAGZjYQWx71G9mCz8nETpgATH0igjJTBxuVGk2IaI0ZP0HLv3r1Pfpk4 VcknEXt9bIcmSgIbi7gkDWJF+fkhmInyLUGexnH5/FgQJDd0IqFSg+Q5Nd+UlDTZi93Zfp0yQw4m HZKfxvwq8Qm79P4YpK2bT6Ecu0HwxHbk2ElqMjiASfTbgU96ehqwnawfs7kLlsisOQtAfJnYoGqc 4pWCjeCJPePOx8eDGizLPHHKLF3KfxKe6+Jlq7CfSyiIMFTT+WXiNC1bGtL+acx4/ZDNR/mMdmjK ZY8WAa8RKHQN0C0wX/p6dWur1kSNyzilRrAANz3nEveRZctKl07tdEl1hgkDYXEDbxJbEir0rt17 TFSt6KWwP8d5vZ3tIKlFkSQb1K8rPbp2hFaVJD+DAFo0b5zd7OYS71u3xcoeEAE3EaemsgMEzLid 2reW9m1bqnZq7F7JKVHSsV1rJQVuwk5ts2Xzppp+S6Q7ZvwUrNYTKQ2x6XfnDm1U/pWr16qMbBGS OKkF9Tu3h5LFJ1+O0PJVjamsmhH3zqAjWdavWwu70bVVbfKzr39UkqL21qNbJ93E6NufxippcKOm dtAQ20O7i4qqIIuXrlIZmQ73DKmOZfG7AkNqb1+PGCMbN29HGXeCdEshfiY0uX0gnWRochWkc8d2 aGIfwa54v6g2x4/DFUMGqba6DxgxDX6wmF4ZfAy++WGMkjqX02/etKHiRVMBsaiJPUA+hdzUYFm+ DZu34TwV2wsc1o8DP0p8LtWwPD81UH5IorCr3GUXDQBppksl7s8MTZJaK/dbsc4iUJQIeKIBGg2H FZwvPXcly2YjPaOOKFIZTblundsL99ydPH22Vn76x0MzWgKtgU2r+nVqqkZJfzo257g/hTbTUOmo RVHDS8M5HSufk7pe+s99IJNQVNaqSiCdO7SVriAdEi01ILp92B6TmhLJJNO/xwjJj45N7YwMJxyb 3ywX0+OGS8aZPU94TS2NHS8k1NTUdNVkKa9PsXA6WJx4zs552oSl3EwYLgLbfYah2UiS0nThzTsk bjpqeW6TAEmXebGJyTBHNV6INp3Z9GVT95wenXWDJTZFmRrL5uwzwj2Gs5SAKTPJm+nww8Rd+GjG YBOWjh+Ssv5NnUqDxHnNHeRIciRRau1NGtRD87yhyq3bd2oLIBw5oqyQsSVMHWzS0w5MIEn+NfBc lmIv4eUrnY+IwUEztT8WAQ8R8EADdCoxaywN/9QkjqKCzZr7h/RGJcw2oKPW7oYdatGSFartkWSM ZkQtjaS4FvZBViySDisi79eHRrl0+Wr5aSyawWkZElOlkvTq3llGrd+ozcW9sMlRK8vAXrV0rLqs 4I0b1Zelq9agoq1RLbFls0bY9rK9Nt+oacbH75Z+sM9R81y4eCpsXPWc5nNYiJLmyDETJQlNRtoR O3VorfdyKqq/zJqjSL06tVSzYdOQBNG0UQOpFBXlEJwrKEmM6U1B05ZE3qJZY4nGJkYkC3Ihg2Kj T02VRLhuwyY5cPCg2vouGNDHnxvC4N7BQ4dk6sy52Of4IPKKxg51zVS7o6aYiedQHph2wO54xikh i6M5NoAmO3r8ZN2kHl8s2Cl7Ipj/M4bsqbH7xYBcfn89GP8Q3WA+KrqirN+8VcMmg9Bpx+Xz5n5M WZk+1TCp6ZGEf5k0TYYM7i+z5y0G5lVgc0wDMZoPij8PI6w9WgQ8QsCT1WBYudi8jISBnZuXsyLQ LkYNjBWCdiPuHVuxYnk0b/eqPYiVoIJLo2J87ntbDU27ZNjCaPinxkFHTSVuZ4Jes3OFabIJFp+w BxW9rDYHGYfkQ3sezytjc3OGSUBzmltYUuugO3DwEDS//UpQzIMuLn4XZC+jWgztg9whjva8BHQg UEbKyk4H2uZ4Ta2LNjA254yjoT8OnQjUMmvXqq7kp+QEOczubuwc2rQlVrqDiFmmOrWh7YItWPbK lSvxC+KcIw57ZRuimV8JJFO+XDklfpMXNTZqmmmQgRptHWw3yg8KNWX2EDM/bj5PbfxA0iFsTxqt +exHPlUoD/BjZ1AWZK4NPEm2tCESMzqGq4TtQfkxInb8qFFGysF82GyuhDTToSXzeVapVEmxZzja aiuiyctw7PCIxPOgP22OfP78OBFXEjSb8dZZBIoSAU8IsCgLcCbnRc2TBNwE2umJ3Hr0XpNYDEmf KLzepxoJcrPOImARCI6AJcDguFhfi4BF4CxAwJNOkLMAN1tEi4BFoAQgYAmwBDxEWwSLgEWgYAhY AiwYbjaWRcAiUAIQsARYAh6iLYJFwCJQMAQsARYMNxvLImARKAEIWAIsAQ/RFsEiYBEoGAKWAAuG m41lEbAIlAAELAGWgIdoi2ARsAgUDAFLgAXDzcayCFgESgAClgBLwEO0RbAIWAQKhoAlwILhZmNZ BCwCJQABS4Al4CHaIlgELAIFQ8ASYMFws7EsAhaBEoCAJcAS8BBtESwCFoGCIWAJsGC42VgWAYtA CUDAEmAJeIi2CBYBi0DBELAEWDDcbCyLgEWgBCBgCbAEPERbBIuARaBgCFgCLBhuNpZFwCJQAhCw BFgCHqItgkXAIlAwBCwBFgw3G8siYBEoAQhYAiwBD9EWwSJgESgYApYAC4abjWURsAiUAAQsAZaA h2iLYBGwCBQMAUuABcPNxrIIWARKAAKWAEvAQ7RFsAhYBAqGgCXAguGWZyyfTwT/rbMIWATOAATC vZTRBzYICQkRkgIO+XImTr4CF8NAh5OTJSUlVSpUKCeRZcueUMLMzCwJDQ1RnE4Y2MMA+cE9Kysr lwShoaF4tj79Mzfod7qdkSk0BLLk87073TLb/E8PAh4ToEhaWpqUKVPGXzrqRsd/I0mYZ6JLBulN nDJTdu/ZK6x4mb4saVC3jpzft5eULlXqmCKZj0JWVqaEhR17/5gIhexBkqAj3itWrZMt22Ll0osG 6MeKOmyw55CFOJlHj2q88HDn1WE6R44cyU6rdOnSel5YP2vWbZRdwPScHl2Eea5as1727N0vvXFd qlTw15eyH4WcoaVOPxkXFg42HW8QCP4GFUJeaWnp8svEaRKfsEsaNagng/qfKyHQdMLDwvJMnRrG V99+LwPP7y81a1TPM1xxukEeSU9Pl29HjJHq1WNk6NWXKuElp6bK5KmzZeSYiXLN5ReC5HKXmzw/ e848mf77HGnapJFccdkQKeUnlaIonyG4zMxMmb3gD4mP3yVdOraVWjWJ+7EfocQDB+Wjz/4nWdBY +RyPpB+R++65U8aO/1W2x+6AFhsmtWvVkBuuuxrEVDiEfvhwskyaNksoY7mykdKyeWP5bdpshScq qoJ0bNf6GKgOJiXJ9yNGyb79+6VH1y7St885Qcn8mIjW46xEwLNP5NKVa/Diidx8/ZX4Yu+TFavX yohR42XO/MUKtF8ByQZ989at8tiTz8pHn34lqSCPM8WxjNNnzZfo6IpyyQXnS1TFClK2bBmJqVxJ rr3qIkmBBrxi9brs4hjNa8myFfLTz2Pl4gsHyuYt22TMuAkaxtzPjuDRycbN22TKzDny6Zc/SKWo KNX+vvtpnH60Fi9bJRkZjlZnsk88cEDS8VG74tIhUr9uXdl/IFGJcMOmLTJ44Pnwv1gG9O97DNGb +AU5RkRESNUqlUG6PqlXt5aUL19OqsVUlgxonNWrVc2VJHFzPqA/SBnEozwjRo2W1WtysM8VwV4U GwTS8a6t3RQvU2atkl+mLJHfF6yV2J37hS0Or51nGmBE6VLQI0K1EGwSVixfXvqf11NYydq3bSnl InPbx2IqV5FbbhyqL/ERfzPL68IXRvpsam2DBjRkcH9Nbu++RDTT1kGbaiflykVKt07tUAk3Svs2 LVWvMprX3AULpWPH9tKhXVvxZfnkx5Gj5crLLkYax2pfhSFnYBpLV6yWRUtWKPG1b91Cn0ckiPv3 OQtl6Yo10rxJQymNZ2hcLWjkd952s1SNqSL/++pbuf2WG5VoMjLSZSnIPAUfrYsGD4AmWHjfVDZx e3TtION+nSa78RHdv/+AhEFLrlenltSqUc2Ilut44aABUrFiRdm0eQuOFWCLLZ/rvr0oXgjExu+X ybNWSGz8PslUGzPff59EoBXRunkd6derFbgjN1cUZgkK720NkIrFWLJilXz9w2jZvG07NINQ1QTJ 6WUiSucynDNqhQoVpE2rFlIBX/mi0oKY76k4yplx5CjsTZmQ26losXHxMmbCVEk8mKRJk/jTM9KU 2N3fs5TkFCkPguRHjhpjGprRRUV+FOzyiwdK7+6dZd++/UrUVNdJznwJ/3TbUMdPS+D80I5Ls8Ss ufMlCtpum1Yttbe7dcsW0qF9G+nSqYP85413ZC+IqjBd/bq1pTOa5rPnLZafx/+GjqUyMKecc0wW lJ3k26hhAzVJsGlOAUnY1hVPBDZu3SXfjpkte/cn6bunzxDEoUoCjqvXx8m3o+fIwaQUzwpQqARo NNZtsXEyefpsuevW6+We22+Q66++REZPmIJChEjZMhF4mRcFLRAJ5UwhPxaAD4rNrfLlymknAv3a tGwuwx+5F2ThaCgk/5gqVbRpyPCmfNFodu4F+cBLDiQdAuGUY3QlFT3x+IcdCu2glSYeSIK9LFF2 xO2UfYkHpG7tWpC30jG5s3lJop8+Y5b0O9choIyMDKkFu1/Xzp2kd8/uUhHEyKZyYTraTnt37wR7 X0upXClahlzQX4+BeRBXdsZMmjJNPygvPD1cO0nmLgj+rgXGt9dFi8Ch5DSZMH2pZjr0st5y6cBO Mui8tnLZoC4y4Jw2MvTSnjK4b1uJS9gv0+etceqNW4MoJHELtQnMyky3dXucdO/aCZWppl63aNpY tu/YqTajoSDDsSBD9ppSAzKOcUmgGRlH0STMPdzChCluR8rLISzdu7RHxftdGjaoKxXR5GJFpdu1 e58sXb5Grr9qiF67n1//vufKm+9+JFOmzZAp02fKgH59nS8fEy0ity8xEcS9Q0aMHC8+4M/hO7Rl kkz0K+ySg9rVrt27JC4+Xpo1bap32GkzafJ02bNnn3bgZIIgqwXY5lxJFPiU78r8RctgTsnSHut2 bVoETYukvmHjZlm5ag3MLK1lPwi9HnrirSt+CKzZGCd79iVJTKUKsEFHSp2alY8R8ujWBHQohgvD duvQWGpWc+rVMQFPwSPsGbhTiB80Ku0z9WG0DkGl8XOiGrGroGOATZjmIEQ2gwMrGa+1GdOgvkRG 5pBj0EyKgach/Bga6lE5J/w2XQ4fTpGkQ4dk8bKVMmP2fDm/T09p3LC+SkssTJkrgSQbond88bLl 0rNbN+lzbi+9Z+4XRfHYy1oKdr6LBvXDB6uDlA4vBSILQ699fb8suaVIgqZarWqMtIapgo69vZ1g x1y3fqMOO7l52PVSpfKxL3LuVApwhW/C1u2xGFKVDptpK+1oCkyFuPGvHYhvL3qAd+yIk2uvvlya NWkSGNReFwMEZi/aIAl7DkjblnWldbM6/nrBj79hDJjFypWVTdt2yd7EQ1KjarTUrlH471YIvvYe qRy5C6OYMyu8pP5DMXgMhSvCjvidsnzlWtVu2RvcAcM02Gt5JrhgWl9xkpudTeyZjgzoPDuhjEFe wxPGsQE8R+DzETNk09bd2uw9t3twjZ5C0Aa4cv0OGdC7NTpEjh32dKqCFmoT2AjjUCq/yMbHad6S 3R0tKO+3srhXxJwSHXtWp1ZN4d/JONrWCrPn9GTyZljzJIzmaa6DpoMHq/fdD5ZpOA/c/xUPGvOU Pdm85V9+HOWhSDRPuBSK/ES1YYoIgXJlI2B28Un87rxtximpGRhudRhjh0MwSsFMpihcAQu1E8SI xvoRUEf0OsfPxYwm0ll6PJ3kR8gDn0Tgda7HkvMAA7yd5mcuz9N8oaL6ifk0i2KzD4JA3VpVdKjL zt2JMnfReoyUOJL9IeX4P3aSTJq5HB1zyWouq13j2I65IMmetJcnBHjSUrgiGE3E5WVPixECZ8Lz oYwqZx6EXYzgPGtFadW0jlSOLi8dWtXXTo7vx8yT1DRn8D17fj/9dposW71dh481a1RTalb3hgDz 16YoosfE3r74nQkYxlAWTckamiubXGx35X6XnSZOenqGRLg6UzhHtBwMpxmYpsWpUtRv3PGYFgcd c7gEB/kGq8xF1QTn0Bf2cJkFE9i4dAwEbFIGlpcgHOtfFE1PJ2fnNzU1TeLwfCIxLa1G9aqYooZ5 wQC4KKfwueUJds55w4mJSapN1MDUxErRUccES0VnCofw0E5rXFFjafI9W48VK5SVvj1byvS5q3Ww M4fHleSjt6oAAAelSURBVIlwBt6XhqkjFRoh59PXiImS/rD9hborciGCVmw0QPYwTpo6E9Pg0mXt +k3y+9yFWkyS1ZGjzpchS8mLA4+zdODwlBlz5DAGFOskfcwX5Xi2nQl7ZNHSFUjHGXzMRLjiCh2H 13Ba3jRMXeOYNtrfGM6xGTlTqTjvtCjc0uWrdbgQ8yKRcwgJHQ39NPhTJspHZ+Q/Chyyp6iBJNNR iU3F1YAe/TAPzvT4FYs9HALeyzDNcTmGmixBGTZv2a65soeWctOxR5znfF70d0b46y3Pfsy7MWfB Ejlw8GD2UCrzjJmxec6xO+K1s4p+RzCQnY7PwOCtHvbHcwTY+zu4b3thj/DcP9bLUX/dozJAwmvX oh7GA/bCMBlnjKwXAhUbDXAjKlK1mBgMzm2hcz05MDcOE/Q5nIQVqme3TphStkFBoqbYGENIOA+V Y+/i4hP0a56Kebf16tTWaVOz5/8BvEKkV/eOOuWrR5eOsnDJcp3Mv2HjFmnZrJEOXuZQkKrIt2pM JZ0C1rlDGwzZqa3qVjANsbAeAtMOwzCh5VyJZet2jL+Lguw1tWJG4GvYpkUzTLGLw1Swjpg//Qdm ONTTMXA+YEGMdsQl6EIT1TEshWG8tiVSK+VcYK5s07ZVM6GMv06eiWZMlA48Xr12AwhG5LzeXWXe wqU68JsyJR08JJUrR0uPbpDRo6+4eSbEhtpDXeAY4x+OM3n6HF2RiO8JNdXNwJpDkMIw3GfBH8sw rKeKHMI7wLnRVSpF4X3hqjO5F64w6dtj4SPQpH511fISk5J1thhziK4YKddf1ktqo9nLGWReOm9T PwnJOf+Xa+jRlcJ4NM495YIKXTu313m1S5at1heVK4LURPOLU8dat2wmJACuVNK0cQNJxhg8Nm04 GHlgv3PwIofKVgz05dg8VsaDmJ7GF75Nq6aO5gcFawgWMNiH+bu70Xxms5hTr9gR4CX5sYyms+Eo NFzOV60CkkhPy8DSYRH4EFTR8nFtwVD0gHFBheWr1ur0OmqA22Pj8VEQHXAdHR2tmhbT9MoRi7Lo tRuIKWhcDWbx8lUg7R26OkvL5k00Wz6z3RgQfRCa/KHDh/GBaawzMaIrVUQzFIOr/dqsdzKKki4/ gnOhBc6cu0CWYU5zNEwhQy48X4lvH+YSE+vaWPHmD8yDjsXgfM4rJqbRmD/MMYz82FpXtAiUL1dG 6tbEbCnUUTqOEa6HThKvyY95FRsC5Eu5YeNW2JgcrW/ugsU6QZ9zSxN27VFi4DCIchggzcG6VDdo y0lNS8X0ujI6RCITa+uRWvhFj0/YjeYx7mHcGF9wNnv2gOhos+J9Htms2wHt8ShsWZxyxXnIReUo K5tkpkJSg+JHoGH9epgYvlOnlFHTJdklJh7ErJmyUqNajDRpVF9XQonCx4JkvhRkxErvdVP48KFk 1exI1FyJJWHXbjwDwaDjRNVMaXOljGxKlgqDbRO4R5HYoSFyvUFtrnsILkRRUwEHZ/eERnxer26q edK0shPvVCj/YVgMP440q7AMlDEe9yoCy5o1q6EFsBofS7wb1p01CHgyE6Qg6PHFpPazbsMmbUpx bTpOpduApslR2Gm6QRPk4qFcHokaScWoihJROkLtNmw+cvkp1kjOYw3B6jM01tfCS90ca+1xBRES IL/2jerX0YHKbCKxAmzcvBWaZFPVpvjlMdPYClKGk4lDG2Q0yhAKFX8jmvJ1IRvX02OzngsosJl7 BMS9H9otxxayHJyrexBNhcZoDpPU2ZxrhlVbauLj4XUTmAudhmHNv/WYakabHk0LfGZc/aYRmpc7 8cGpXqOqlAemnNfMAeAk8M1YaJUzYTg32usmMF4LNZGQ3PhRpPZH7Z+LvXaCaYMfz/LlIyWyTKTE wOTRFB+TA2gVMOzGTVu1HJwL7TWWJ/Oe2LDeIuDhTJCCCU5DKCuKeQlpmGbvKBfhDOZo/NYBrwE3 2ZnhXoSUHQlGpaa2QJYlkQaGC0imSC6dZfExbRBFdAzxLL9TXl5nY0EjG6/9i6uyoyG/g4MLqyDE i/IYE4HBPxtHysiC+B2Jnva2HB9zx7sjtWEjH591VsC74M7ZhKWc1vbnRubsOC82TWADt7ty0U9f ZH/tYd1yO+flJZc5N8x9HjkP2fgzDgkl+zo7PCqK3+7gTreozx2yc8rA8hr+cMqXQx08c8tLrEyZ i0pmd/7M08hq8OZgHrdMSt5uD48FJYqG/DQr5B0oczARHCydZxDsvvUrmQgUOw2wZMJsS2URsAgU RwSKnQZYHEGyMlkELAIlEwFLgCXzudpSWQQsAvlAwBJgPkCyQSwCFoGSiYAlwJL5XG2pLAIWgXwg YAkwHyDZIBYBi0DJRMASYMl8rrZUFgGLQD4QsASYD5BsEIuARaBkImAJsGQ+V1sqi4BFIB8IhGfP jshHYBvEImARsAiUJASwHmDOVKuSVDBbFouARcAicCIEwt/+ZNqJwtj7FgGLgEWgRCIQPv63FSWy YLZQFgGLgEXgRAiER0QUm1XxTySrvW8RsAhYBAoVAdsLXKhw2sQsAhaBMwkBS4Bn0tOysloELAKF ioAlwEKF0yZmEbAInEkIWAI8k56WldUiYBEoVAT+H7YFZZbjrnq8AAAAAElFTkSuQmCC --Apple-Mail=_F1FC7F81-4C12-4D6D-A5F0-7DF446CD6D19 Content-Transfer-Encoding: base64 Content-Disposition: inline; filename=0*gG1FcLJE3h2vybWa.jpeg Content-Type: image/jpeg; x-unix-mode=0666; name="0*gG1FcLJE3h2vybWa.jpeg" Content-Id: <50A60641-BB9B-4EC8-B329-1E3B523736F9> /9j/4AAQSkZJRgABAQAASABIAAD/4QBYRXhpZgAATU0AKgAAAAgAAgESAAMAAAABAAEAAIdpAAQA AAABAAAAJgAAAAAAA6ABAAMAAAABAAEAAKACAAQAAAABAAABQKADAAQAAAABAAAAhgAAAAD/wAAR CACGAUADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgED AwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRol JicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWW l5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3 +Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3 AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5 OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaan qKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9sAQwACAgIC AgIDAgIDBQMDAwUGBQUFBQYIBgYGBgYICggICAgICAoKCgoKCgoKDAwMDAwMDg4ODg4PDw8PDw8P Dw8P/9sAQwECAwMEBAQHBAQHEAsJCxAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQ EBAQEBAQEBAQEBAQEBAQ/90ABAAU/9oADAMBAAIRAxEAPwD8xtEt9U8f6lezWd0zC2BcKcsMda84 n07XX1iS0NlJG4YkkggHHcV9qT3MmhTRjRtLj08Iu2RdoBb+VdBaaTc+ONOubi5ihsJLdDsKgFn4 /rXlxnJO9tCXQdrPc+avC8Rh8OXGs3xWOW2mCoHPzHGOg/lXoH/CX3Go2YiZliiyAGI7Vh/8K41u 5uXgYBtjHAJ6n6Vv3Xwg8WpaCO6kW1icbl+bk8dKJ04PVsyVGaIINe0RbmCea8QtbthUGOc9zXf3 FzpGsWmbeTz5QC+U56V5P/wphkng+zsTcSEK7MTg139n8M/FnhqdG066SWJMB0UclT1rlnTi0lF7 F+ylY6Lwjd28cEtvcyE3DNxu6qDXcahoVrGkc9vMLksPmPfNcFeWmt2GpxTQ2ifvVxuPH1qYa0NA vPtFxPjdglTyBiuOdCTtJblKm0jsdSs9NisoZdTxbg9MD5jXK3N9pkKtc24aOOFuGk43CuB8d/EG 71XUAdNBljRccD0rg9S8e/2vGlncq0XljBHqfpXXRwsnH94jGUnex6tqfxNtlDwqhcEbeOgzWDFq WlxPDdLceUrKS4z615JeW0jbbuItsPQdOlR2umapr18tlaQSMzqSAOOlU8LTgm0c95Fu9WG+1m4u 7TdJAG4YDivdvBOhmCWO+lGFwMZOK8mttP1jw9p0loLFriXOSoGSMetemaPLf6vpKJYgwTHBK5wR XPVfNtsdFNuxf8ZyrDKkunBYjO+3dnrVePw4l3bC8vDHbtsaNCDyzsODWVqcUSWk1vqpxcL91j2I ry1fEet316dDizcSOwWJVPBx/nOaqjSnsuhPtLPU9P0HVbTw7aS2lwxWTUB8p6DbGcnJ+uOtb66N Bd6fDcarrkGkWlwAXCq09y4HPEa4CA9RvYE9cYriIfCs1xdxXGuS7pUT91Cg3BW65JPA9cUmq22t qgt4F3QRDc+Tg5J6n198GvqaeG9y0mbVKyk72LWq+IdE8NaqLfwvq81zp8exGuXAjmMzAFgQh+Vf 7ozyK3INct74bYpwzMfmHUk9cmvAb/QZEvZSpylwgEjIMlXAPY9R0BU9exBrU8KR3YnS6QKnljEm TwCBnIz/AHhyPUfjVukoq0dCKc+lj3AanJp7oTIFIJbpnPsR6Gty1u5HHnnCiQ87R6/XmvJftyTe IWiLFkWNG2+mRzj3PrXqWluqogYHIGeea8eafNoevC3Krlm8+2yKUgIKnpjgis6CFlkEdyCwPXIw Cff1rYjuh+9inYBTyM9cjpWfNqBlmaFDgKOTjqP8KpDk10LcQWQ+VEPl+nFYniSBZbW2TI+SfA9T uXPH4jmtqFo0ORjJ7ivN/Emp3FxqYjiBaG2BJwfvEnnHuuMV1U4pnNOT2OhttSvrHgOEZB8oB9u+ OK3tK8Wa+JSbS4mjVzkhHC89jjPPNeZ2TLdjznlcIrH5WHB/H+ldlaXZ+WEGMP8A3iMkjtg9K7eW Njlbktj3/wAIfGrxL4cm3Xt1LG+RscMe3YryDj2xX3N4I+I3g34x6XP4L+I1slzbXaqiXKFVuLZ2 HEy89BnORnuCCK/J25juVZoVBlhfkEDo3+Hp/Kui8Ma5qWiXcN3ZzMkkbAhkYqwBwevsa4quHhLZ GsZyaszrfj98LfF3wM+IN14Y1+dprC6XztPvVGI7u2PCuMZAbsy54Ptivm/UdbEtxHbLIzohyeel ftnotl4a/bB/Z8/4QDxZMsHijS1Y2N7/ABwXSg7CQTyjDAcdCDnggV+HPj/wl4r+EvjHUfB3jOxa 01CwkaJwR8pweGU91YYIPcGvMVCMZnFWi47HqOieJv7IEUxUncOGzyK9p8PatpVtY6t4s1KNnvdO u7AW7Z+XbcxzCVdvrhQQe2DXx3pDan4ju7XT4H2Bu9e0axdzxeFdVaE9dSttnX5vLhmB9iBuHHXm sFS5FUv1VjSnrG57fp3jJL3UopYbZjDMdpZjlQD7V2d1oiaeY7mwnDxzNlih7mvlnwn4p1C2FuZV V4EOHHevpzRNX0vzAyyiKM4ZlbkD1OK+MxkXCXuf8OdkKacbyOZ8V/DnU/s51uOQ5A3BSK5tGtop 4bi5LSLCo+WYEcn0B617p4q8d3NloS3mm+Vd6fv8tmyNxz6CvlnVvF1p438QwWGs3K21tbttj2Da QOMhsfpXVl88RKm1Wjbsc9WMYv3GbHxD1DTNB01Lu3Vk+0DJ28rz6V89ah8Q9SuV+zh94BGwd8V7 D4oufDUurXOjG7N1aKqhCQTsPpmvK/EvgG+0VBqSxb/Py8SKPm2+tfTYaokkqu5ySb5tGf/Q4rVP DNvqJWe6jLSE4yB2qte6NYWQgFmksMSYDMAcEjtXuWmeIvANlayPJcs0h/hIJOPyrm9f8Y6dqrLZ aNBhFIb51wTivlIznfY+klHszyhY7GxnF1ZAvcHsw6fhWnc2r3iRzSMZ5wNzIc4X2xWz5Wp6pqcb R2mGP3do44rXsUEOosjoTdfdZNvFauRhyPcyrW5iuIo5obaNPLG3GO478CrsUl5p6F7mKEQStlmH Jx6CuuntraWyFvbsltcHO5WHaufutJm020RpJ0aFjySCdv51PM9i+TpYbq0vgvxAkVsYZAy9GUEH n8jXDa/8HfC5f+0jO/lvj925P58mvRtKk0K0liuBcpKXfGcdK6XVLqzuJhPMI7iLoqjrVqpJaITo rqjxLTfhNoNoDdWSh0dcKW55rDvvglpEhiv2sAJHYjIwOT3Ne8SpDBG7vHtVSDGFPSpNE1Kxvrg2 dwZJMdgOATU+1n3E6ULbHgVx8CrK0aNpJRJkZ29QK2tJ8IaB4aspNSeMNNGCEOOn5V9dR22laQkc 17agwEAE9TzXzr8a9Z8HWFgI9JnSOSQ42Jyc/QUuaU9DKahCLaR82a48cWoNqAlEQmzuRe4rlzd2 uhmTWI28yKQ4wD92teO38V65bpeWGiyXduz+Uz7cD8jTdY+Dfjm+mEmn2jPZAq0qBcY9RXdGmre+ eLd9EcF4s1Vbmxt7uRHjtJOdzD7x+tavwz8Mpp9vc+JLiAtPekrBvB3Jb92HBxvP44HvX0Ff/DvQ m8GWmmXkay8+bKrdU2dF9gSOfauLury38qfyEAWMbFAGABjAA9vSvYwcE1znNKLvqYNtNLd6oZ+i KzdsjpgfnVjU3WZWjjXHTcRxg981ntexQRMY/vOPmxgH2561ytxcC9mMYZlTGCCeWr0pSZcYoytc sxHKyyJ8xIIPRBjueckdM1wmnX7qhsLfjcztx1xnhW+mcfr3r0TV3FzssUiYxLj942M8f571y/8A ZUbXrTWaYCgMenTHP8q45yujdKxx1tq0uleIJI7l2b7Q4ZM4JCEKAPwavoayklZIHjbkE717EY/m Oor518HTxa9rw1G4QgRtJGAw4wMHnPvxXvUeYwUIJHB9gO1cTtbmOpSatE3bpS3zsdxx3rFaaPZu 3Yb7vIxVS61Nrfc4yAew7/0rnZ9Qa6kijUbdzc5+9j2rmVRN2R1unK12dJeaybSyEmfmlZYkb/e6 n8P61ytsPOhL7t7wy7XB+8eRls+hBBNWNW8u58u3TLIg49N56/lxioNLDSykTkRiYYLH+CSP19sc H2rrhUtoccodTdt7HybhUaM85+ZeB05NbNpDGGDyAMxwRjBCjHJ+tZMVy6yhhlVOI2OQVDA7SD39 s/Q96trcW1vAqmQmYloyc9Ch6D8MVftSOU2Xvo4/MSEDBJDH0IGBjPf1pbFdigqpIkG1PoO5/Hmu WFzb3EZmlcrCjMxJz8+0+/8AD/OuqiuxGQHfa2BvOPlRRg4Hue57VXtBOLPqH4FeN7rwX4l09LWT l7lTw2AQpBZTnqDj9a+pP2w/hX4c+OXw4k+IOnoltq3h8vHcTom8y2kblWzjktGcc91Jr82tJ16a wvrW648sEMI2GWVVb5Se+5jg49q/R39mzxXY6rqGofD3xAVu4NQE8L7WJVvPAEka552ojKucfeyB XNVin7wbqx+Tum+E7Dw7qaQ6VdSapcbPLRhGUVS3B2j7xY9BkDFe33nwe8YXtpp9h5YtxGxaQMeT LJ1JX1CgL+FdVc/Brxj4O+Icmi2Fyrtplw0QYr8/7pyoZie+PT1r6g/sa4gZLrUNQhnPBZi20o4H Q152KxCmuWK0Oqlhly6nyXon7MniO0W8n1rUFtnDb4wmMMOvStDUPBupaFZG/icSrGpDEkc49q+u 73S7XxC620N7vmtk8xjG/Az2ryLWPhfo0l/Hcaze3UomYgxo5CAH2FeVKClJN6I09k7Wij86te8R a/a6lHCbhxa+YWWLPyA/SuK1g6jdyy3dnGyyEk8+vrmv1Kk/Zj8BXaJc3U8jJncPmzt79ansPgB4 GmYJa273U0RJIJ4K/wAq9aNenGzOF4ScnqfmP8P9G8TyXctxqYPlvhiW5zj3NfVHiLxtp6eHovPs 8X8MPkRMV3Lzxmvr3Vfhl8PLS28q20uRZlCqyRg8sKr2vgjwTewxWtzoknmwkCMuvGfeuOvKnVkm xrCNH//Rs6V4O1W7u1+2RR+Wo4YcZrp9K8LaNY6kf7ViHmY4I5wtexp4ZstLIcziVNvUtnpS2ur6 BHO8Jt/NlYYPy5GPrXxTqSZ9aoJHNXejeH9C+zX2kqZ/MwD/ALOetVLyzi1CSSQRLDyMFcBm/GtX WPE2iQTJbRQtsbPCr8oI96828QatPeWEs1mhhiU7AU+9k0opvcUpIhutH1C5upQifZ3iyBLw2Qah ufCeozWvk3WpB4ursAOAKZoBvAk1lcG4aOQY6EkepzXXWdrYW2kSi9kNvbRBvMkk+U4981vr3Mef sjzj+wNGs9PTztQDQls4C/NgelWPCXifwNq+ryaVbqRLCDhZvlLleuKoa3B4Q1cTDQNWRGSL5Qzc HjtzXybbeCfGcV3c6obnyooJS4dQWdhnjFbwhzXuyZza1R926dq2lalqj2kWkGNowSXZ8Jx6Vtxa z4csL9BaeXbyucPuGVB+tfDmseJ/GGhaLZeI9LN1eW9vcCKdCpO4njgDmvQ/D/x18JXI+z+KdAmh uUAOACCT7ggVp9Xf2dTmddW1PrbxFqOn3NkItSu7eOKddqHf1ftxXnem6D8JZL0RauI5rxDnewyA fUV8+v8AE3wdrOtTTxaPdzWlsANgB+Vye/pXpfw3h0vxJqV8fE2lS6XaSZ8mUnJwelNw5I6mLlGb tudPrNxoGla01pFPIbaECSP7Kh2sfftW1pnjZNcFzLFp80ENuApVzsDds13R8C+Hns0MOo+YgXam 0Dg+pNct4XltdGnn0nxDBJfWwYss7R4Uc8AY61jzprY25UjxX4uapFa2EUFrbfZPtgJYn+JR7+5r 5evb+aKBbKMheMk5znPavoL9oXXLW+8TWtvp6FYIIFXawxg7mNfJd5qkTebIo2YYgZz2r6bDS5aE UeVWipVGyzcagkLHzOdvTPHIrHbV0WdJ2ISTk84GcegyCawNQnubq3ka3AkkXJUNwCevWvPLfw1f zauuq6g7b2PKuRhM9uD0qZV2y1SSPpD+07K/jd87DsJUMcc46V59/aN2ypPM4ReeQecHjH0rVSGS 1tQs/CFeD64964i71vT4XJkGURvLj/uqcgfjXM5NdToVNGzotlFaOZLTnz2LsR0Ddefyr0mW8R4N 9q+dw6kc7hXi+t28un2o1ywcxqZONo6E4x+BrotJ15tQsopygG7hsHABHXH0rzMTUmldbHoYeEG3 fc6G/vDL+7bJOOfrWXbS7BJPt3yRj5cdck4/SrJvtOcfvJ1B7gMCc+2OagtLWe4mjydtux3cjJOO g9qyw023qjbEQSW5rv5lvD5hGAvOG61NYRC580M2ZwSyLnILAZ2+4ZT+PIqPV7aQQfKdyZyVHGVx WTDcW/2cxoQkpK8k7Qyg8HP8LA16l2eby3RtxzNGIJF2m2ucgcncjrxsYdd2AV/4CKyRcTNDJNI2 wsC4IPBJUj36nikube+tYpjMwkFyCZCD8yzx4dG9t6r1HBxx1rD1G8jS+jiRSYhGHbA5xkso/HIF NyBRsdQLlMmFD5qoNrL6lfuAD1B5NdGkrz7URvMAKocgnc/U+nCd/evOI5pLWTyywa4fPIGTvbG5 h+HA9z7Vs2l0zTnTLd2dgApII2oh7bvUnlj1xSUnew5R6ndWl+ZpsRsAgbEjhhuY5A2oTkjHTPX0 r7N/ZxuI4/E41qzmZTnaAmWRVQABP+BYYk+wz1r4osYnjRWIAKDgkY+Ue3UDPrya+2/gBpb2/hnV tTD5z5cUSspG6aZvlIxxk/N24xWs5JQ1OSEW5H214stvDmqeNbvUVs98swjf5TySY15z3z3rIvdE sp7Z31DSY47dTly/IYD1NWby8hF9DNJbOXKInmYxnYoQH6HH4VD4guG1HTZdPZHS3ZD5iq3JXvzX zLqNyPfjTionD6vrvw20+FIIbiCxeYhAUbk+3Fb7afpM7W/kR+ZBgAS9evevBdU+HXgdfJ1OzgaO K0JUqzFufxr1Czu3k0e3kslkWxQqgHTcfrWzStoYKVnqj2K30Dw66CxuplkQDLL90gHvV+y0bQtL SYaXKkZwTnIOBXhOo3erLcxJDaSySTfKGDA/KPXFW7O41TS5YzPbs0dxkAg5wPQ1jyd2V7bsjvpV 0y4vTG9whB/iXrmrWof2XZQmN545CVG05AO6vC/EfjEaJYu16IbKWPew8w7XABx071znh/xBofix k1NdQi1OaIoPLU4Kk9SVzWzppoy55dGf/9Lttc8aXOpvANFsZPssIOXwep7YFYy62LgLGLWVSFLT D5lP0FVIfF7abK32BJbaHhgrrgkZ5OPSpbXxZpF5eztNqTxDOeQBx36ivi/Z2Pqnd9SzpWpwss11 PDLPFCQqooJC/Xjk1j2+s3QXUESIRxStuhMgI2HPvXpnhu9sI7cQ6XcebDOeC+CxZu9diPCMWvKL eSOW4CKVYqE2j8RUOaXQPZOStc8k0XxdeWcP2a5JubaU/NcooJV/T86zPE9x4u8UWeo6JZ2/7h4M FiFDE9jj3r2qz+EGh2tu1t5cywMwLpuON3UYpJvhjZ6aJLq1M2+4zvjL4JHb5uwqFNJ3Q1h52sz4 F034KeO5JFl1UDTLdRmOTzNxftjaDxXrPg/wBqnhnU7vUNY1M31hZRCRVJ6cenf6V7xc/DTQrGB9 R1qd/KXgRrOev1zUFr4Y8AI73l48yW74bPmtICB2YCuidZz9DONJx0TPNNJ8U+D9YDMZJAIZDJLG sWDn+E4rX8N+DNM8dR32tMraY8Dko91EAZF9RXc6ZYfCOfVLieyuzEkA2yKigcHkP61fufFnw2tB 9jtdVuFLjyl3Rlo1B70ufTZmbpLucdN8JxZxSXSahZxeYFZjjO/HTIq3F4X0y41uI6nfta5UJEYw fKbjoe1VJNK8JXMm+PxPI/mybMldqr9M8CuU1gaYNYhit9Te8hs5MbmlwuR7CmpJ7mDbierxeH/B 2lGXQZNXeOW4xJGokwQwOc5J6GtG1k8EaXE63V+bic8YVwwB+hryi5+Ho8WX8N4t+lh5i72kkcrn b0AJ7Vsz/AeU2SXMMltqTK+cB3V0P94Efeptq1yHzdUfI3x81q3vfiHqz6fKvl2axwLt6blQEn6k k18wXM++NoyuMtyAeor0TxfPEb++lZW3XE7knkn72O9eYyyxw5Z+dvJxxxX2EYpU0jytb3IZb0ac iF1EmPu4HOTwOaoXOoyQ7BMyy3DkHaP5n2/nT9Uu7SS3WF4wsjYEYByS2ck/StTwj8PfEPinUCmi WUt9LLg7l4jG3/abCgD61x1HC+52UlPcrXd9ey2ywt+5EiAcHJIPp6CuS1abSrcG0VN8iryACVVi MDJ6cdfrW74ne5sJTp5XDr8rlTnaBxkHpjjtXJw6aDCXRtoI4GMqfw65Psa8+cmtEejGKerNUazd anpH2d/lIXGBz8y/pyas6IVntfMjOwyD5wDxkdRj2/lVa205ERpY0wwHKq25TnuMnNb2kWlvEmQF jkUE7QfvD2qU/dVxtXZt6fYwFPMIG9BuzgdTW/bTEOiE847j9KxBM9vGLiAAgnDIf7vfI9e9X4Lx Zc78Bl9GGD+Pc1N/euUoq1jqL+cQ2yLkHdwDg5x/Pisc27ShJoVCZH3jwSMc5B4IPpxWRJemNzL5 WVDfKGY4BPXnniu7tXt7m0WP+LGcDkZ+uK70zglFrY4HxFdjTLJrlV2rLB5WMkqzo2VwMAA4Y9q4 i/uQmpTF5SpVFTah5LBQAPwBJrt/iHaL/Zds0rbYre5RicfwgHI/HA9a8Q1DVI1cyKokvLlidx5w TxgVk027I2i0ldnfx6pLPd/ZrJMTvj5jzsHYn6DoO5yTxXd6PbJaRrIqloQQELnG+Q/eY92rjfCe hGKLNwA7kM7FujEc4J/HkfhXpcdpOrqXiO6LCoQBjHfrwOvXrW8YWOZzcmado92XjW3k3+ZgtngM uenHp6V+mfwo0W60zwTo0JIhDk3DFiRulI2x/kWJGCRwK/PPwPoVxr3iezspGWOIP94t06dO3096 /ViysrbTdOttP2TywWkQEa+WMgADCgetcuJnZWNqcepJqVh4itzFAbw5Zc4yDwOuPSsZTO9o8Gn6 g0l2uVOeVOfU1l61pFzexDWfs11cpKxUoGaM4PGMe1cfpOi3uizO2kadJeTKMuHmc/hn1rxmo2Ox uZ6Tc6Vp1jbxWV4qzyEBmAbIY9WOPaq6aoL61udHSApZ8iMqD8p9fpXGfaPFLzrf/wBg4Vt2AZMi NPo3P1r0vQNP1GCD+1o/JgNzgsGkBUKBxgelXtrcjWW6OW8OXVh4Ytyb+6kZSSf37YOScYXvgUsX j238RXj+HbMb0hlU+ZEwIVSeCT25rI1LU7LWNR/0uG1+z7mVphubZJnHHGDkVHp2ieD9Nvb6x0S6 lZyBJNIiBR/iQKzk01q9SOSSNTxxo+mXghu9XtYb0RbkczYJbPTB9K5ux0Hw7punyT6RYWVjcBwz uilSox2I6ntXYX+mabLZwJcXMV+XyAGJ2rk5z+VcJr+pw6FOIdT1D7LpwU7Fj2+W7L91STzn+dZO vayTuzKcXe5//9PpdQ1PQ/E16ZXs3EBVVMrfKMegx6d61dP0Xw7Be77O3huUlAHzYz6AAGuJi8Nw 6VIbXXLtoAqbkzMFBHpgd6n8rw5GQVdkZArpIjMzZ98cV8g4u2h9Zzant1lZw2MzRW2hWkwYAszN txjpwKg1WPxFNbSrYfZtLkZlwkLsMj3IPevCdV8eaVZx/wBlwX1z56gHGOc57e31qG28di2MFveS C7WUjION4I54I74rNw5dWYyxEYu2x7ZY6H8TImRrPxHbmQnd5ZfO38DXRtonxGt7W4v7/Xo3QAbv u9PQCvGdO8f2c93MlvYXTx7BgnAIB4HP1r1/R9fXTLKFbuyVQq72BPmYJ/vHPJqHB7nRGou4+30H XDDJc6rK1wJADGqBT+YNeSeOLP4wajKdI8FQ2en20qeWHkI81g3U8DC17bD4zi1OKOJo0hXOAdpD gY9h+lcwLnRrTWBcC7uLjaCQDuCqT2x3og+V36lTUWj5d0X4EfG3TtXN/bLbLKpAZ/ObD59SRg19 iWmmaHDo0UHiHwcsuqJtRlhG4SNjGQ3v1rPuXvb5WvTcXkESEHyU+QOpPoTkfWufu9SvNflNk+j3 BtrWQMsvmNuOB6A5Jq6k5TldsiHLBWSOrbRPDJtbmCLwJBczIw/cyNzz34PauBvdB8P2WvR3ui6D a2RkCJxjYkjHBADE9K51D4x0zV3XR9Fnt4bhypE9wVLBh1wTla5vVbiw0dftF5Y3ESNIcoiFhG47 s3TBPSsOWSOedRdFse2XDmC4g+0XlnciI7WGzLMxPTH0o8S+O9astKmkt9RghiQOY2EG0rtU/Jkd /evFfCV+viiaSPRC1vCjByZAEZc8fxYOc1s6nZKdH1W0urgX9zAsjwl24VghLcL1I9KSVpJSMXWV mrn5w+Irs5bDkncxJ7EnmrHwu+Evir4xeL08L+GwsTLE801xKpaGEKDt8zbz85G0Y5z24NZevHzJ FOASxUEAMvXvzX3T+wl4T06RvFHiW6gla+E0FrDMrjCxKDI67OuclefTgd6+uxlRwpNo8/DQU6ii y38N/wBhnw1os6at8VNVOrzjB+xWytDboqnnzHP7x8+gCj619Pa98P8AwL4J0G+8UaTp6wW2m2kh jCny4UREJyoGB/jX0Bpen6YbOQa/EY4yeGjYKxUnvmvnz9roaPoPwS1NrS5klXUtllEpmR2/fH5s KvQbQRXyMJSqVFGT3Pp6lOFOm2kfiJrkI1HUnJbDH5wR6ON2P1rGkthZuqyr8pGQQc8/TuK6+OxW 5vlZV2Ki7QDnGOAD+lWNS0uGFVQrxnr1Pv8ASvpZxPDhIwNEs9S8RXg07w9YTX92+4+VAhklAQbm IUdgOp/Oo9U07VNKcrrFnPaSQvlfNiaMgg4zggd/Svsf4FanB8H/AIey+OLKyjbxN4luJ7W2llXd 5NlDt3kAjH7yRsZz/DjpWVrPi/V77RZYNSlXUZr+cs6yqggXPTA/n2rz405yd+h1yrQirHySdaRI C0mC5HX1Xvz61NbGIg+RJvDKCjYABzz+dfSg+Aek+KIJruxnS2vEhMr2sTB9+RklEJ3DHXGa8Bvv Dd94bC21zGGTcyxygEbgpx8ysOCP/wBWaqKalyyQueMvhZUVpEK+fGHwehIxXVWN60TbQREmOTjg D8uK455JGfYyjbwA2Pwx6/pXQaNazpcrLeR/K3IycjGa7oxujmlJLQj+KIki8JLdDkmePCj+LOcH 1xXhHhjTZNQ1eK4vRuVDkL6n0HpXuHxJv7WHw1M98xVFaNSQMlMngBRXmXg68srqZZ9LdpEDbDvX YFJ5GT9Of0rVSSRz8rkz32zs4RDFJDJmN9ynAPyk8D8O1aySPbqY5U+brnt8wxj9Oa5Cw1N4S1vL IdpXHXg88GtzTriS8uY7WSTOWCtnqcHoPrT50WqbTPrr9nrwqZ7z/hIbkFIrb70qAMUdgduAf4uM DPAye+K9g0z4oeKrDUF0HStOupLxpyZGnZVWGBTyS3OCfetj4Y+GbeD4ftbWhEN5NdmObcMlHAQg jAwcbuenvivatN0vQoTDpurxx3lzbsvmGJWhVscjccEE5PIzivGqVE5OUjq9lJ2USjF40md5GOoy PDE6hkVFZU34wu8gBjk9qfGupo95Hb3dnLaXT7iZWCuD6DGMGu6vbGW5vBcWSwz28YO+1BUFmUfK QeAuPevNv+EI8V65rD311pA04XJOzy3EigD7pbBxn6VwTaeqGqNa9jf1W/8ADcdpBYagP3ZTy3MI MrKzdiw6ZNcTDq9r4YvUsjp0l7apyzRxZ+RTwG5z7HFalj8OPGGj+JbcXGj6dPp0rLveJpnmwxI3 7Bgbh9a9Qt9IQaybjV/D/lvENkDwh1Xjsytk8jv61m3ZaanXGk29dDzbxTr3h34hpcPptlFpqwhU 8iGLygXx1IPP1Irg9P0+w0FDb3UCRzT4RpS7OoHcevNfS9h4TvbLVJbz7Nb6et2QyiUq8jAducY/ Ctp/Aa2yTXMy6cfNfzlMxwQSOpLdMe1Z86NVQbWp8pa/pHhd4JHW6ZEAWMopKrtYjLru7j1rJtPg xoGuXtvPqYn1CztSGaOV96OgOeAp9O9fSmpeA/Dsty+rSXllcTun+rJDR7x0+X0JrJg0nfJ5l7dW ltLFEwCQxskMhHYnAIqubrEl4e+jP//U9W1TwHpWtT/bXh+2Rk/IhjIC465PXms+XR9L0lfsTaL5 ODn7rFTjpz6Zr06K61Ge4VNL163twgyVMyuGA9RzU0TalqQmutW1u2gtUQgiM7iT03ZPHPpXw3tG tz7NwXY8M1i3lv7WSGewt7RCu3z7dELhfqeRxXga+GPDlq7iABJIZGlDO5LMc9cdiRX1/aaP4Sd/ sUOqmeSaQ4yrKhz15xjNR6r8G9CvrxXsp5i75LAKDkKOgOMVqqsdmYuhzatHytaawUtprexeG1iL fPJITuK5524rStPE7Wb/AGbTplaRxiSXeWQ4Pvxmvoqf4E+DdLt3FxPIZyNwjkyzFjzt4OKwbr4K aY9lv+yqokGNiIz49O4xWntoPYp0WjxaT4p+LNAkC3l/beSGBjQkbiSe+M16FYfGHVr1ImuZYWkl IRI403g8ZzntXR2Xww8EaTbNJrzXCxREYWRUOT6r6VsRv4I0jy5NOtTLZ7GDssalj6HI6c1LnHoj P2cl1MO913xjeCO4S5s7eWUoig7mfnrhOmB9a7y31jRbTR4Gk8YbtTgOySC3RRK0pHBGMjbnqD+d c7HatrhVU0kWNoh3K7fvGKn1z61LYadBZRCKyaGCNpC/mCMZ68DAXPXjk0JwW6MpUZPaRrtrGoW+ nrNr9xHdXcgaT7RdMpnzz91UGBgYAFY9hNqF/oISLUbvyr4sDL5O7b9RjA9qS/m/s1ftsaPc30xK o/lqdrZ6qGOB7VRkvNYmt2M99Lbx4BWNmAIOeeEyD61E227oUMO07OWh1PhXwDaWsbpFcpcXNwmx pXiJ3DPXYe/vXQeNNL8IeG/C+qy3sciA28wVmiVFaQRNjaPXPevN9O1vWZNWaLw7qMjTptzhDjHr ub+Vc98dpfE2jeAr/WfEmpktcEW8ULbQzNJwTt64AyeKdOLnUUbnROEYQcrH5jXs8vnbiAwyMkmv 1N/Yd0vQYPhbfareWbzXN5qc3mOtwY8rEqoilRzkZP51+WbN9ouw6JuGcgAYPHtX6PfCLTbvwv4U 0rQr25lLovnywMdkatN820Lx83POfSvocyX7tRXU8fAfxeY/QGXXfDkcn2exs7ecoxD+ZcBggHXJ avg79vPx1pbaN4a8Mafa29qZvtN8zQuG4VfJQNtAx8zE17ZZXukx25WJ7X7TE+drOpMZB/iBzkiv zi/a28V33iP4qCSSOMppthDbv5eAhJJkJCrjnBHSvCwdH97fsezi6r9lZdT570q5l+1DJ3grgHsA Oea6+GyXUbmG3ZtzTOB7DJ4Jrh9G+Zf3Q2/MeM8civoz4HeFX8U+PrCKSBZraJleRZOEEa8uxP8A sqC2Pbnivfm7Js8SCu7H6b+Dfhp4AsfCvh7Q9S0iW/1K0so0cxDcqsy7i65XB3E5OP8AGuil+DPw 41zyl1fwl9uaAbVZ18sqPU8AfiKv3NpD4ovFvrDXXRWjykccot441AwB8oyeKvadp1jZQeX9sbLD Aaa5Zxu74zzya+SlKV73Z9NCnFKzRjxfAz4Y+GJjqml6ZbWN2BvLlmZkHtznp1r45/bH8A6Rp3w6 g8U6cEW5tbyJD5SnBjuAyknJOMEA1982o0rYn266sUdDlmkfJAB67sEAV4j+1TqWga18F/FVjYeT qWIY5WaAHaksMivlWx2APPerpTlzq+oVYR5XZWPxE0+UA7kMkwbJOSqL7/NjNdNBI3mxbAohTncM kAZyQCe2a4SfVozI8EcezLZOTjgV0mkXSXcxiiyF/iA5BGOw/wAK+lUtDwnHU6TxF8MPG3j3wRe6 v4a0i51extb6O1uDaxNK8bMhkViqgnbjjP0rxzwn4ag0m2ms8SR3bcOj8YYHAIU+3B7iv18/Z+1C D4e/Ak6tcxPJHqd3NPIYrkIykN5cZEWQWO0deeMV4R4v8BfD/wCKmoNqlvDc6BqVw0jSXkqvIs0x GQzqD1J4BULzzXl1K1V3SWiO2NOmmpX1PhtbsRyvBclmdRxnoCDg9ec+1ekeAblV8QW15eqJI4mB EbHG854Un3Nc5438MXvhzUWs75CL20PkyAnhmXo+TjIYcg9+/NTeEL9JtbsoHCr++jJz9eadOTZU oo/cXwpoOmR+GrUl2shcbr4q+9iDcEuVGM/KucAdcV20U2nTWdtCx+1PHwojR1L+hJbj6VlWd3pG keDdGvNXs479ruGNElAkZYVKDAZFPJOGIPfn0rKutes12W0F5BDDCf8Anhs3L6kMSeema89qTZ1x nFHXrayEJdvZSYHyhBdjzAOSOFz1PODiu28Mf8Ja+xJ2lgjI3bWJHlgepY4ryW11bX4QIrbU4I0P LhIguf7qhl3Hp7/Ss251l7hntNVm+0OnyMzrMQQeTyzgdOOBzWTpt6F+1SR9DarfzSQGK319hDnY 5hQyPnoeF5H4DisaTV49MiGmyX0l6qEeWxEjEcdDz1FeDyeNdK0+eW0t9ThLniCNbdVYKf4VIY8D 1NSf2/qFtZO41Saa1J3FDt8wM3UrheMdlxS9hIhVz1qTUtSmgaaWyt4zK/yzSIWlXJ4xknrS3mj6 vqcrSlYbRYwu070yc8Zw2R+FeOs2qamjRnV5LaNmymBvlcAZ25JUD3OK7bTrD7FEuoNPIzQ4U5ZS RtweVBbFJxadhKo5PVaCXOheJ7LN39sjZW+Z4jNECDuwMLyenIrO8Qzi305oFuJYmYEGVpBIGx2K qOMDmuzuvEWtXcITSNMAuMFnkmjycDqB8vyjv15rl9V0nxNqkKXFm6xEpmUQsA5zzg5P8hxSu1qy 5Wasj//V9CsfE+gw6ej21raWjsjFlhAZ5E9A3FbHhjVtT16RhEi2dlH8irKEDEey+/qa5yX4Q6Db Sf2lc6uySJ83yRszhT6I3GPoK00tNF0pA1jNPK+OJJ1Kt7kKvFfDvk2R9pZnsdtc2lhA7XI3yJ/D tBCjPqMCtWfV9Qlsm8pXUZyrDCkg9MACvAhrN+b+WBrgvGUEqRcL8mOrNz1NaUXimdbOW41cfYbS 2Xf9oa62qSD8oULyfesWl0NLtHptz4mOjxRx6hKpuZ2wMxPI5TuMgfKT61pwato08ax6haT28oyA ASysAMg81w8Q1/xBaWmraJq9nPFdxho3JaRQOmCABhhjvWpDpV0to82qatPe34JZFihJUkdAAeAD SbRUVLcfrFnFr9s0GiacsqkYQumSCeC3XrjpmvMj8OdcglSytpV09EUhs9ZSfrk8egr2S105LqyS wt7u9tJfvMVVEcNxwoJx+dbDLFpu2TVY7m4kiAKvwW+XuojBJJ/WhTa0QcierPDbL4YeJ9TmMSal cXDKuwr+8ij257n0FdZpngHXfDzyW73VpErkYbhzgjoS5J/Gu11W5u9TgW5062vo0uVBkUZhaNT2 Kk5zmuE1PwL/AGzcy2u2c4blmcllOBwBn+tPmb3YcqWyNC78KadHEZNW1G2klj5VPPEac8dQc5+l c9PJ4c02ZfPvIJYz8rImTt9ApyenfPWon+GV1azhv3UyRk83G3JC8DPU8fWvyp8ey/E/Xfjt4v0b Rre4uI4ruWK3SwR0KiHEaMCuMJgdWrroU1N2crI5q0nBXSufqPr3xP8ABHhSyY3Woi2hwdyxhVd1 Pocbs1+cfxe+Kw8dan5GlCZNJtWbyVmkaR2J6uxJ6n0HAFc7J8GvjfKQ15ojxu4GXuLqPoe5JYmu 88Mfs5a1DeR3Hj7WbfT7dmUPBbvvlJ6kFyNoBXuM4r36Dw1D3k7y/rY8Wt9YraONkZPwU+G2p/EP xGk0cO/S7Bt9zIcbCVG5YiCRndxn2r9EDoGsTuN3mXYiwPl24BAz8oHJxXmuj/2Xpek2XhzwvcrH Y2cWxsRsi7BycOP9YxPJJrbj8T6mTmB0a3C5LRxnkj8fvY44rysTVnWlzHp4elGlG3U3bbRIdPtJ Td6glvc3ZDIPK3MADgl2/pX5u/Fm5S78a6k4uBMondfMVcFgnyrj0Bxmv0En8TWmnaNNNPckCGGR vLwhfauW69Tz+Nfmzflb24uL6fieZiy8jK5OcY/ya6sBTbbbObHTsoxK+n26ieRIBwOeOSSBX6Of sy+D00zwtdeJblHS51gtDAxwFWBMF25xtyw257jIr4T8I+HL/X9bsbKyX95dzxW4PO3fMQo5HoSC fav0b8SxN4a8vStPhaXTtKjjs4dmXQeThA20EZ3tlvx5rfGPTkTOXDXlLma2PT4NDsDftMl/MmFO 8QzKYwc/xYyR+defeJ/H+meC76K30y2Or6pIVMpMuxIo887mAODjoBkk155ceMNYtGlj12c2QBH7 uMKrkj12Dp7GuPnvLK4uHuIpGLtljuGSzNXk06VpXlsenKpdWjoz6C1/UJPFGix3+j6pby+Wpd7X A85M4yvzFcgE9cc+lePeMG8a6v4fuNNuLqW3tFQwbHKxpMsowxIAy3HYnjtVvwtpl19pg1S50e6u YYm8wssL7Djg845HrXd3Gr64jmwPhy6u459jRGJCm1SMgNliML9BWcm4VLRV0YOs9mr+h+Od/p8l vqsls4LMG24JweDg7vaum02FxOrJnzJHAyD8v0BxVnx/pMy+MNXeDCoLuYbP4kG88Y9qd4fSO31e 1WeTEKSIWLYwF3DJx04r2d43RlfU+m28beGPh7qMfhLxVd3d2LOK1UpHEGii3xq8gxvUsee2M19U /D3SfCnijQJ/EXh/U/7bsFdhbnaIhAxIIRwuCrZ6K4+mRzX5mfFPxHp3i/4q63qWimSW0uZRs3YY fIgUgEDlfl+U+mK9I/Z98X3Xw7+I+lahHIY7G9kW2vY3+48ErbWLr32Ehge2KipRfs7rczp1LzaP f/2lvDiavoz63fWtpY3dmV2rEw3yRNwMr/Fg857cjpXw5pU5tr1JQBvjIIxjHB7Gv2E/ai8GaDpP we1zU18tr4NCyEKmMs4yAQoJBBzjPFfj5piLPNsAXdkc/L0P1Iripe9G6PRm+V2Z+wnwl+Jdl4i8 E+HLHWrtLKDUxLpVzKzn91cJ+/spsgZHJeNgOoOM16NP4KvoNRurXVkV5VB3qUIVQVHJz1GPmBx3 r4o+GegHX/gbqhsLotq2gagl7HbgjMlskbCUrjqVzuAHOM19Z/Czxvc/FrwNDcTyR/2roDJbiV8/ NagfMkgyNwXh1Y543CsZQ5b2Ivd7HTW3gvfEJLe7O0sEEcLNzt4yRisfxSINMsfssEgubiRwjoWy 3I4XAGeD6mvfrGzjlsFiS1e2KrtaS1PLOehZRwAT15ziuF1j4bLffafssNzZSxhQZOJTISedpYja R3xzxXN7V31Zq6T7Hjzawvhm3kupfC4+0qAI2VsKpPGMknJPYfpS6NrttrFuNSvLODTL26yqpPO7 IUU4yVwTn03fe7V3dp8GprMJqF/f3t3HjKKiRjG09t+7ceTk4yPWtu88Oapp10n9h6e0U88Yy9xi aVh0DliML6gKBg9alylJ6MtRSVmcxqfhPxLq+nyRW9zPEQQQYoo4oDuXO8uPn2g9FPX1rf0TwR4y tIsavqFzctbKESaB4ijKeSDHtZm6j5jyPTFatr8MfGOrE6hfXuWmx5itLliOgyg4NdZYfDLVdHg2 prKWEobeAj7SwxycdeB1rNySVrplxg+zRxfiOw16yvBDquoXU6x/IsEMkAUgjJaRsqW47DvWYdE0 y2tpL7Q7y4kaJywRVt2j3AYILclO/J79q9ytPCWmQpIddnOrxuVlWZghCbehBfp+ArMvfBPhK9uJ 5rCKWJzzxI0alm54VBhuDxWbn2N1TP/W2rPVdf1O2gn0dHntrffEzuzBmPbO7qAOmDitC5n1DT7G VrhCFKADJDFDIewz6+prktJ8TrayXdvo4S5e3VXEMsg3nPHyjPTOOOoFciviuPW7mQapFG8KcSxJ IwAOeQQDjAr49wd3dH2alorM9Y0vRLq205b26lleKIlQvlhdw6kLjOTVfUNIGoQXMOsG4udMwCEY CGIrnIJAw5xxwOtcPFHdX3mw6ZqLWU2xtrFj5a55z09O9ZPhO3lmu5LPxDJcw20bbEuruRo0l5/g 3Ecdwajl6oTdj6Q8Jaxp9vosOnaVGlhDE2VAYRICB3Jxn1Oa1tP8V24uTFLfNdTlyAkOIjIfUFuo /KvIGk0fSLmW21F3tpE+YrcS7huPIIYZyrLjkVp3WueCpJI5S0ylEGZUh+Tco4UO3OPU4Fc7WrNt T2iTxPpq5tEEv2yXJXc6FvpnpgVuaJ4lumhW0i0+4e5O7c0TffHYbgdtfNll4x0xplhtrN/Nbc/m yXf7rAPCgqpKsfyHSvVNB8S2r3aLbXEUNxIq/PPcuyAn0LFcn2xWLjoaJnpmnzeLHDE6NCiSEfO8 xkl9iQABgfWm3kPi6cIqXsKyxuQ0KFFIHfkc9PWuLn8W3mleYkniW2kS4kTb5ZGIx/ulv1zXQ+Ft Q0u4T+1fEWvfabNnyznanfHAjGSDWTctzbQ0ksJZtOSGXytkmdxKsxyPTPH9KnTwlZalaTSRWzWN yAA0kaLEZBjuygbjj1qnefGX4fWGrGLS7K7aCItEJVVsTMD2BHAI6Hipbrxgddt4ZbbwfqN7HM2d qz4Kg8c7sY9SBQufsU1FbHmupeEPDFxqAsLyGaW7jUMm4mTIB4LAAhfbFZOraJI7/Z7bT5H8vISP ZwuDyxVx3r6S8GWFx4ailTSfDa26SkuyMRJID1LPKx6c8DP0qNWeO8uJNXso0mvM7iYdpAJyPmGS QelaxqMxdNNHzZe6Fr9msK6nFFZWcUY33BjXy0HcFiRyT9a1R8ObfVtGS4t7v7ZbXC7SI1aAHPLH +Hj+dej69DewSy3E09nGok32/wBoBbyyBwDG3H444rm7zWfEM1obvVL93eE7mWKOQwtEBwB5hRVO B1HrW6ntY5XHufI/7QFhpPw+8G29npd4sl/qrG28pIw8kdug3OHdiTg8AYx3618AkzzzbmBiiXno FBx0wK93+PXi7RfFfi3/AIlEaR29oDGpDEhnJy7Bjk8ngH2yK8WtrQSKzGVRxnJz+WSa+xwtKUaa v1Pl8RVjKpofol+x5Bpl5pGsXssYll0KVb2OMbVk8wqUHJHKsSO/b617bqek+LNXTdBcW2nwbsfe 8x1jHOAe3pwK8X/ZY+HGty+Br/xOkRQavMkUbO4jURW7Hlc/eBYn8q+x9G+HmuPcCK3mjDynD7lL 4z1wcNnA78V89i6qVaTR7OHpN00fNrfDjS3vgNWv550lOR5KjczcZ+9yevUdK7vwz4Cjsr2S10jS /NlZQD57q7hG6kEgYPuOa+wYvgncaq0Md1JDmLbiTy8ufXBOMDFe1aF8K9F0SMTQxKZ8YL45/wDr Vx+1qzVomz9hTfvnzBpXh65sUi0+9uTCkkYHlIueB2711Wj+E9Fubjb5dwxTnc5CJx6Yxz9a+ih4 UtVlExUuw4yW/wAKji8H/wCk7o8rGGzwO1clpvpqdEa9FLc/mu/aq+F2s/C/4y67ZTQyfYL+Vr2y lZeJIZjuGD0JUkqfQivniKfzFO9tmPXHX2r+rr4ifBjwV8UtFfw9460q31eyOcCRf3kZ/vRyDDRt 7qRX54+If+CWvw4fWJL/AEjxlq2lac77haGGC5ZRnoszbSfYlSfXNerSxEqa99HnylTm/dZ+KpQ6 czzysrgfNwepPQf410fg1tS1jxbo1lpCG4uJLiJURBvJO8du+O9ft1qX/BPf9nRvDcGgTaZeSXCK c6iLx47xm9eSYv8AgOzHtXR/Bz9lH4O/BTVXvPCWkXd3qU6bRe3t0k8iAngRhUCpnuQM9qJ49STs jaGGSs7ni37WaaND8GpbfZJLqlzcQrGxyflHMhAIAAwB0r8lILER3q+XMFZjgrIAP1r9qP2t/hp4 j1y20iW1s5ZraJXyId8pR/V8Zwce2K/OBvg5q0l1ibS53cNjBjZDnqOCBVYerCEdWKtFzk3HY0Ph V4n1nwXq9iIUWeK6uoBwRjaHw3B45UkH9a+ivhH4k0T4efFuaC2Vf7Bl1S5Ryyhh9nnPljcpyMLk YI7DrUHg74C6tcaXDPc2b286gmMdWVsdz/SsWf4f6tpV21lcWzxlQVYscEhj1zzxQ6tObaM/Zzgf rJc2UjsTbHzImIKFFzG6nkEBeDkdCM1yutpf2sWLhDbMcoudxB3dOVzhsZPI6CvRPgz4ani+GHhy LU0l+0QW2wC4/wBYIwx2A8f3cY74xXoE2m6JZNJcX00cQfG4NtAJ6Dr1Nea8PKLvbQ3eOXw9T590 bw1IbUXsAXUgW4KyMMY+8vp15xgcetaFj4c1yTUZGuIbYWJ4CHJn3dQ24dgexOCO1e8GxjtI3uHn +TAI8tNxwOgCjr+ArDu72yhtvPS6dYm+8kkY3DHqGIx+NRKm4q7FHE82iX5nE2WjapbKfPQNBuyF 5BznI27hx+BxWhHpZkma6uFVdy4KGNST6fMfT8Ko6hremNMJ5NWSNyRxNJEqqPUBC3Ud651viN8P Y454U8QLLLZsUlMZabHHCkIp/ADJrn1udXNodtBpNqLhWkG5hkHESk4bjBcdBVufStMVzKyrA0QK oxDYBPfCkbhXHaZ8UNAidY4UvNVmfeV8u22IvlnBUhiNuD/exT/Evxb1Ww09ru08GXhJdFkZ5I1x GerjyxKSQOgIGfWtVC61epzTnUveKdu5/9fz698KWWlQ4jAiyHO6H5ZGKnuxBNVNDm1y3UWulywo 0KybXlUyNlQCMsee9dt4m/1C/SX+dcroH/H2/wBJf/QFr5VarU+uej0Mm1TxNBcsdQ1+4nef97Io VRGu5vuqvpWvpHh3TtW1ppZ5bvVJrUglLu5KQcjPCIrdPQ1HP/x+j/riv/oRroPBX/Id1D/gP/oN Zt6s2cVY9Hu7OzhhW51ewtmt3wIo4kLFSPlXezYLdOxGOK5Btc0+9ku1tbUxQ2bhDuOWYt0PORXd eJP+QRa/7y/+hGvG9L/5jX/XeP8AlUOEUtDKNSTlqzuo7PT7pBHNBv3lUUZ2cHnlhz1HpXVS+GNO 0xLR57VbiOTDuGlc/ePAxgZGOvNc3Y/fg/30/ka9M17/AI9LP/cj/nWL3N+ZnMaP4l8MNfXGnWPh 2B7iDCZm5iJ7Nj5j9a9303TvFFwlvBph0+yE0YMYEbMqNnr26V8meGv+Rr1D/rolfc3hr/XaX/1z X+dc09DopttamHLYfEnTUdtZ1Wyl8klQbaFoi5JHLD8+hro7a51O1s/MnWOTzhuRld1YKCAQcg54 re8V/wCon/66Vjz/APINtf8Arm38655bHQtNTVSPxDaPFqkGqsYyTiBkUrtIyMtjccDp0FZGr640 NpLPdb7qZ03kMdq7idv8ODiusl/5BUH0/wDZTXmXiH/jzb/rl/7UFZxVzRqyMeO6utSSVdFWOwIA eVyC7EHqAD14Hc18GftH+Lb3Qri48P2FxcBJVQzM0h+ZmTeQOc7cEcdznPQV93+GPu3v/XFf5Gvz g/an/wCRquP92L/0QtfQZfFOrqfOYyTVPQ+RYpX1CWRy3OcjdyOmcfSu48B+Hrrxh4x0zwrDMltL qlzHa78HYnmHG7HJ4FcHo333+v8AQV7T8B/+S0eFf+wrb/8AoVfZybsfLJI/oR+GXwzh8EfD/wAP 6BYtCILCziQ4jB3sq5ZuRwWbJJ7mumtNOuZdRTdduBuDFU+Rfpx2rsdM/wCRdsf+vdf/AEGsbT/+ QiPw/nX5lWfvv1PuKbfsz1iztIIolKgk+pq8X2ABxyePWo4P9UtE/wDB9a9mHux90+TlJybbKUt0 om2AEErkdx1xSx3LNMIyx4FUZv8Aj7X/AK5/1qSH/j6/4DXIpO7dzZrQsDUoGleLY2V6mue1fWYI 7WWaQSCNOy4J/Wp0/wCPyauU8Qf8gm4/z3NZVJycXdnTSirpnFXnxX8Mj79jdMY22HiPBIzzjNYc vxp0JPL+yaTO4Bw2+RU+hAAb+deMX/WX/rs39a5pen/AqyjFPc7buyVz2a9+IHiDUtd/c2cL6Xcx Jthed0dWPP3hG2QQOa9Iit/C2uWx1GXQI3upAGdmmIJYDs2wnt6CvCNP/wCPuz/3Iv8A0E17j4a/ 5Bn/AAH/ABrnslUO+pJqmrMltfE2macHtLLR448KOWkL8sSPQdxXk+qWlxbeM7KW3eET36eZse3j lijUcrtMgZ927vnAHY107/8AH5J9E/8AQ2rJ1r/kd9C/69hVL4h8qSuaevXfxmtrefWD4qhtLa1V 5DFHB5rGNCeM/ugCwHPp26c4mueI/HtnZxJHqss6yoJHZ7l1YJKONpEZIZSeOcY/KvSfGP8AyKWp /wDXrN/Nq8z8R/8AHpB/16Qf0rs3WpzKMVskeb6P4/ufFPi7XvC8pvDbaIEVpJb6Z5JJGOGA52hM f7O7PpXpemQ6dcwT6mlmGTbHb+XK7MVZRkkPzuBBA5UHg56183/Dn/kqfxA/66p/6FX0j4d/5ANx /wBfH/sgqKis7Lsa0W3zHCeKNQ8I+GLGJtUtLmQLOsOLbyl8t3UsCu9TkYXBzz35rivDvjOC1sUh v0vBqSuTcrbXKxwFZQShRvLDbgoGRtHPQ96f8Zf+QcP+wjB/6Lkrz21/5CF19IP/AEWayu+VswnO SnJJn0t4S1fSrQ31zZWjrcW8Mc1wrOSrrJkhg4IYyADk4Geme9U11+4s7MXegwG2srkz/ZgLiRZQ 8Y81ixYSFQWLDAZgRjjtWJ4W+94h/wCwfa/+gvRB/wAitpH+/e/+ijWtNX1ZxVqs72uf/9k= --Apple-Mail=_F1FC7F81-4C12-4D6D-A5F0-7DF446CD6D19-- --Apple-Mail=_1F756202-4195-4B21-B6B1-8708FE4892E0--